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Sun W, Hu Q, Ji W, Wright G, Gu Z. Leveraging Physiology for Precision Drug
Delivery. Physiol Rev 97: 189–225, 2017. Published November 9, 2016;
doi:10.1152/physrev.00015.2016.—Physiological characteristics of diseases bring
about both challenges and opportunities for targeted drug delivery. Various drug deliv-
ery platforms have been devised ranging from macro- to micro- and further into the

nanoscopic scale in the past decades. Recently, the favorable physicochemical properties of
nanomaterials, including long circulation, robust tissue and cell penetration attract broad interest,
leading to extensive studies for therapeutic benefits. Accumulated knowledge about the physiolog-
ical barriers that affect the in vivo fate of nanomedicine has led to more rational guidelines for
tailoring the nanocarriers, such as size, shape, charge, and surface ligands. Meanwhile, pro-
gresses in material chemistry and molecular pharmaceutics generate a panel of physiological
stimuli-responsive modules that are equipped into the formulations to prepare “smart” drug delivery
systems. The capability of harnessing physiological traits of diseased tissues to control the accu-
mulation of or drug release from nanomedicine has further improved the controlled drug release
profiles with a precise manner. Successful clinical translation of a few nano-formulations has
excited the collaborative efforts from the research community, pharmaceutical industry, and the
public towards a promising future of smart drug delivery.
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I. INTRODUCTION

Physiological barriers dwindle the convenience and efficacy
of drug administration, demanding the development of
drug delivery systems (DDSs) (73, 116, 299, 329, 359,
461). DDSs, including devices and formulations (111, 262,
423, 456), were designed to meet the physiological traits of
diseases for improved pharmacokinetic and pharmacody-
namic properties of drugs (165, 218, 293, 319). In the
meantime, extensive research efforts in DDSs generated a
large collection of publications covering multiple disci-
plines (20, 77, 105, 170, 353, 369, 386, 415, 428).

DDSs have evolved during the last six decades and could be
briefly classified into three generations (322, 330). Early
systems (since �1950s) were designed as oral formulations
(289) or transdermal patches for delayed drug release (457).
Basic principles for drug release were established, such as
diffusion, dissolution, osmosis, or ion exchange, during this

period (426). The second generation controlled release
(since 1980s) mainly refers to the efforts to keep a constant
drug concentration in the blood (321). Few second genera-
tion DDSs entered the market (370), but the development of
bioresponsive polymers during this period paved the way
for more controllable DDSs (331). The emerging third gen-
eration of DDSs based on nanomaterials (since �2010) was
proposed with modular and tunable physiolochemical
properties (110) to facilitate the prospect of “precision
medicine” (68, 220, 420), where personalized genomics
data would be taken into account for customized drug ad-
ministration and optimized pharmacokinetics (66, 81, 276,
440).

In this review, we will start with a big picture of the drug
delivery field concerning the basic rationale for why, what,
and how drugs are delivered for improved therapeutic effi-
cacies. Then we will focus on the latest drug delivery plat-
form, nanocarriers, with cancer as a model disease to de-
scribe the physiological barriers and corresponding strate-
gies for target drug delivery. Recent strategies for devising
“smart” nanomedicine will also be discussed with the aim
of harnessing physiological cues for controlling the target-
ing and release behaviors of the nanocarriers, such as acti-
vated cellular uptake or stimuli-responsive drug release.
Lessons learned from FDA-approved nano-formulations or
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formulations undergoing clinical trials will also be dis-
cussed.

II. OVERVIEW OF DRUG DELIVERY
SYSTEMS

A. Why Deliver?

It is well accepted that pharmaceutical agents administered
via different routes (FIGURE 1), especially through systemic
administration, often lead to adverse side effects even
though pharmaceutically beneficial effects could be
achieved. To address this dilemma, DDSs, developed in the
form of either formulations or devices (278), work as media
between the drugs and the patients. These forms enhance
the therapeutic efficacy and safety of the drugs by improv-
ing their absorption, distribution, metabolism, and excre-
tion (ADME) profiles (141, 509). An ideal DDS should be
able to shield the therapeutics from unwanted physical or
physiochemical damages and deliver the right amount of
drugs to the right location to act within the body during the
right period of time (133). Decades of development enabled
DDSs with a wide array of beneficial properties to improve
the pharmacokinetic and pharmacodynamic profiles of
drugs (101), uncovering a wealth of opportunities for bring-
ing Ehrlich’s concept of “magic bullet” to life (155).

1. Absorption

DDSs can help enhance the absorption of drugs, promoting
their transportation from the site of administration into
blood circulation by 1) improving the solubility of poorly
dissolvable drugs or 2) changing the route of drug admin-
istration (288, 337). Therapeutic efficacies of hydrophobic
drugs are often hampered by their low water solubility,
which could be mitigated by loading the drugs into amphi-
philic material-based formulations (241, 248) or milling the

therapeutic compounds into nanocrystalline particles (34,
194, 273). For example, the surfactant-based self-emulsify-
ing DDSs could keep hydrophobic drugs in fine emulsions,
making them easier to be absorbed from the gut when ad-
ministered orally (343). Additionally, the oligosaccharide
cyclodextrin (CD), characterized by its hydrophobic inter-
nal cavity and hydrophilic external surface, is a popular
excipient for improving the solubility of therapeutics, such
as the hydrophobic anticancer drugs camptothecin (CPT)
(191) and SN-38 (315), by forming host-guest inclusion
complexes (80). With the assistance of some nonionic or
ionic stabilizers, NanoCrystal Technology applied high
shearing forces to mill micron-sized drug crystals into stably
dispersed nanoparticles (273), where the subcellular size of
nanoparticles enabled them to penetrate the capillary walls.
The NanoCrystal Technology has brought about numerous
clinically approved formulations, including the immuno-
suppressant drug Rapamune and the antiemetic drug
Emend (509). In contrast to changing the physiochemical
properties of the drugs, switching the drug administration
route is a straightforward method for enhancing drug ab-
sorption. For the noninvasive drug administration routes,
such as oral administration (363), absorption of most drugs
is mainly a process of passive diffusion across the gastroin-
testinal (GI) tract, where the concentration gradient of the
drug is the main driving force for diffusion, leading to lim-
ited absorption rate. In addition, the existence of some ef-
flux mechanisms, such as the P-glycoprotein that can ex-
crete drug from vascular circulation into the intestinal lu-
men, further limits the absorption of orally administered
drugs. Furthermore, metabolism of the administered drugs
in the GI tract or the liver before they reach the blood
circulation, known as the first pass metabolism, could also
reduce the bioavailability of the drugs. To bypass these
limitations, parenteral administration routes were explored
with numerous types of DDSs being developed. Accurate
dosing and rapid absorption by intravenous (IV) or intra-
muscular (IM) injections are widely used for administering

FIGURE 1. Typical routes of drug administration that in-
clude ocular, subligual, buccal, oral, intravenous, intramus-
cular, subcutaneous, transdermal, nasal, pulmonary, vagi-
nal, and rectal routes. Different drug delivery systems were
developed to overcome various physiological barriers asso-
ciated with the routes. The physiochemical properties and
therapeutic targets of the drugs determined the choices of
drug administration routes.
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drugs. However, the pain associated with these methods
elicited people’s interest in less invasive surrogates. For ex-
amples, microneedle-array has emerged as a great alterna-
tive due to its low cost and simplicity for drug administra-
tion (200, 477). Recently, a smart insulin patch made of
painless microneedle arrays containing glucose-sensitive
vesicles was demonstrated for convenient treatment of type
1 diabetes, which held great promise to relieve diabetic
patients from the pain of injecting insulin (487).

2. Distribution

DDSs can help control the spatial-temporal distribution of
delivered drugs (361). The control of spatial drug distribu-
tion, which generally refers to the process involving trans-
porting drugs from blood circulation into the tissues, aims
to direct drugs specifically into the site of action; while the
temporal control is meant to regulate the timing of drug
release or pro-drug activation. DDSs, especially nanocarri-
ers, could be functionalized with specific targeting agents to
bind to different types of diseased tissues (8, 328). For ex-
ample, monoclonal antibody HER2 can target anticancer
drugs toward HER2-positive breast tumors, enhancing the
therapeutic efficacies by the order of 100–10,000 times
(510). Peptides targeting adipocytes are capable of guiding
nanoparticles containing small interfering RNA (siRNA)
into fat-storing tissues for treating obesity (466). Monosac-
charides and their derivatives like galactose and N-acetyl-
galactosamine are able to target transcription factor or
siRNA into the hepatocytes (224, 263, 298). To control the
timing of drug release or activation, DDSs incorporating
stimuli-responsive moieties were designed (247) for differ-
ent types of physiological factors, such as glucose levels
(281, 436, 496), pH gradients (189, 236, 317, 401), redox
gradients (121, 171, 266, 335), overexpressed enzymes (23,
161), and ATP gradients (398).

3. Metabolism and excretion

DDSs can alter the metabolism and clearance of delivered
drugs through 1) altering the routes through which drugs
are transported within the body, 2) shielding the therapeu-
tic agents from adverse physiochemical environments, 3)
delaying drug release, and 4) bypassing the active drug ef-
flux transporters (441, 444). The liver and kidney are the
major sites for drug clearance. Drugs administered into
the body generally undergo metabolic changes, especially
in the liver, which is known as “biotransformation” (460).
Different types of hepatic enzymes, mainly oxidases and
transferases, transform drugs into more clearable deriva-
tives, significantly affecting their half-life, clear rate, and
bioavailability. Drugs absorbed by the GI tract will go
through the liver via the portal vein before reaching sys-
temic circulation, a circumstance known as the “first-pass
effect” that influences the bioavailability or activity of many
orally administered drugs (414). Turning to other paren-

teral drug administration routes, such as transdermal (345),
buccal (151), nasal (173), rectal (304), or vaginal (357),
could directly bypass the portal venous system. Alterna-
tively, formulations could also help drugs to circumvent
hepatic metabolism. For example, the lipid-based nano-for-
mulations could be engineered to make use of the lymphatic
system for distribution even after oral administration (6).
When drugs enter the blood by different delivery methods,
multiple clearance mechanisms exist for eliminating drugs
from circulation, such as digestive enzymes, the mononu-
clear phagocytic system (MPS), and renal clearance (135,
290). Drug delivery formulations encapsulating drugs in a
closed compartment could prevent them from enzymatic
attacks in numerous types of physiological environments.
For example, an in situ polymerized nanogel coating on
biomolecular therapeutics could shield proteins from pro-
tease digestion (132, 478) as well as protect DNA from
DNase (400) or miRNA from RNase (235) degradation.
PEGylation, a technique of covalently conjugating poly-
(ethylene glycol) (PEG) onto therapeutic agents or DDSs,
has become a widely adopted strategy for improving the
stealth of drugs or DDSs (355). The highly hydrophilic PEG
absorbs a large extent of water that can function as a nat-
ural barrier to isolate the loaded cargoes from enzymatic
degradations, preventing the therapeutic agents from being
sequestered into MPS and reducing glomerular filtration by
increasing the hydrodynamic size of the formulations.

Compared with adjusting the interaction between drugs
and the physiological environments (131), sustained drug
release systems provide an effective way for controlling
drug clearance (156, 219, 240). Implantable depots capable
of continuously releasing drugs for days or even months are
convenient systems for delivering fragile drugs, which gen-
erally undergo rapid metabolism or clearance, with im-
proved patient compliance (39, 106). After repeated treat-
ment by the same therapeutic agents, in particular with
chemotherapeutics, cancer cells would become resistant to
that drug or its homologs by overexpressing active efflux
transporters of the ATP binding cassette (ABC) containing
protein family (374). Nanoparticle-based DDSs can bypass
these transmembrane multidrug resistance (MDR) trans-
porters by targeting other receptors on cancer cell mem-
branes (37, 201), co-delivering an inhibitor of the trans-
porters, or incorporating stimuli-responsive drug release
that could also significantly block the MDR (85).

B. What to Deliver?

Tailoring a carrier for a drug requires investigation of the
chemical composition and target site of the drug (169).
Drugs having the same molecular composition and func-
tioning against physiologically proximal targets generally
face the same barriers for delivery (279), thus can be deliv-
ered by analogous strategies. Deliverable therapeutics in-
clude small molecule drugs, proteins, nucleic acids, and
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therapeutic cells. Small molecule therapeutics are classic
drugs that make up the majority of drugs on the market
(234). They are frequently developed as regulators, mainly
inhibitors, of target proteins or other biomolecules (174,
303). Compared with biologics, small molecule drugs can
reach targeted sites relatively easily and penetrate through
cell membrane effectively. Even though small molecule
therapeutics remain the primary type of available drugs,
recent years have witnessed a considerable increase in FDA-
approved biologics, mainly protein therapeutics, from 7%
in 2013 to 27% in 2014 (294). Proteins participate in all life
activities, including transporting biomolecules or transduc-
ing signals within and between cells, driving biochemical
reactions, and supporting cellular or tissue scaffolds (350).
Unlike small molecule drugs that are limited to simple func-
tionalities, protein therapeutics perform more diverse yet
specific activities that could be typically classified into 1)
replacing or replenishing deficient proteins, 2) targeting
specific molecules, and 3) vaccination (222). Proteins are
usually impermeable to the cell membrane as a result of
their relatively large size and electrostatic charges, making
extracellular targets more accessible to protein therapeu-
tics. Recently, encouraged by the advances in the intra-
cellular protein delivery systems (133), proteins func-
tioning in intracellular compartments hold great poten-
tial for healthcare applications. Nucleic acids represent a
broad class of therapeutic molecules with applications in
immunotherapy and gene therapy. Pathogen-derived nu-
cleic acids, such as the CpG motif targeting Toll-like
receptor 9 (TLR9) in the endosome to stimulate immune
cells or viral genomic fragments capable of vaccinating
the recipient (439) are efficient alternatives to protein-
based immune therapeutics. Gene therapies based on the
delivery of nucleic acids are regarded as promising indi-
vidualized treatments towards various types of life-
threatening genetic disorder-associated diseases, such as
cancer, AIDS, diabetes, or other hereditary diseases (195,
388). A diverse array of therapeutically active nucleic
acids, including antisense nucleotides (16), small inter-
fering RNA (siRNA) (43, 512), microRNA (miRNA) (55,
214), plasmids (375), mRNA (367, 494), or genome ed-
iting tools (69, 257) have been discovered. Nucleic acid-
based gene therapies must be delivered intracellularly,
making the development of efficient vehicles to deliver
these drugs extremely important to take advantage of
nucleic acid therapeutics (136, 190, 484). In addition to
delivering chemically definable molecules, entire cells can
also serve as therapeutics either in the context of the
natural antigens on the cell membrane or from the per-
spective of living cells as a functional entity. The antige-
nicity of exogenous cells could be used to train human
immune systems by mimicking natural infections. There
has been a long history of using inactivated or suppressed
pathogens as vaccines against epidemic diseases (95, 128,
243). Recent development of cell-based vaccines (82) or
chimeric antigen receptor modified T-cell therapies (130)

even cast light on the treatment of endogenously origi-
nated diseases, including cancer. Living cell-based thera-
pies focused on replenishing functional cells to diseased
organs, working in an organ replacement manner (310).

C. How to Deliver?

To meet the physiological requirement of various drug tar-
gets, numerous types of DDSs were developed ranging from
macro-, to micro-, to nanoscale. Macroscale DDSs gener-
ally refer to drug delivery devices with at least one dimen-
sion greater than 1 mm in size (193, 342). Macroscale de-
vices were developed in varying forms, such as wearable
devices (17, 205), mucoadhesives (425), and long-term
drug-releasing implants (202, 419). From the perspective
of material, polymers are preferred for preparing physi-
ologically compatible DDSs (87, 114, 219, 452). Repre-
sentative polymers for these devices include natural poly-
mers like dextran, alginate, chitosan, gelatin, or synthetic
polymers such as poly(lactic-co-glycolic acid) (PLGA) or
poly(�-aminoester) (281). Drugs could be loaded into
either a “reservoir,” where the drugs are enclosed by a
polymeric membrane, or a “matrix,” where the drugs are
embedded in polymeric networks (393). Release of the
drugs could be through diffusion, where the steric hin-
drance from the polymer scaffold dominates; competitive
dissociation, where the drug exhibits specific affinity to-
wards the polymeric carrier; or degradation, where the
polymer scaffold could be eroded via dissolution, hydro-
lysis, or enzymatic digestion (231). Sensitivity to environ-
mental signals could also be incorporated into polymeric
systems for smart drug delivery (348). DDSs in the micro-
scale are generally referred as microparticles that are in-
jected locally in the tissue. Microparticles with a large
diameter (�1 �m) would get stuck in the capillary bed or
get caught by Kupffer cells in the liver, making them
unsuitable for systemic injection (287). When adminis-
tered locally, steric hindrance from the extracellular ma-
trix will limit the movement of microparticles and hold
the microparticles in the site of injection. This feature
leads to widespread applications of microparticles as
drug depots (134).

Unlike microparticles, the nanoscopic size (generally �200
nm) enables the nanocarriers to filter through the fenestra-
tions of liver blood vessels as well as penetrate into tumor
tissue by EPR effect (252, 260, 344). Of note, EPR effect is
not a unique phenomenon limited to solid tumors, but a
more prevalent character exhibited by many types of dis-
eases, for example, fungal infections, heart failure, hepatitis
A, sclerosis, and renal-associated diseases (18, 216, 261,
499). The size of the nanocarriers needs to be meticulously
controlled since lager nanocarriers (�500 nm) are suscep-
tible to macrophage uptake while smaller nanocarriers (�8
nm) are easily cleared out via renal excretion pathway.
Nanocarriers have become a widely investigated DDSs with
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cancer as the most researched target (60). Various types of
material have been demonstrated to construct the nanocar-
riers (125), such as the polymer-based nanogels, micelles,
polymersomes, and dendrimers (12, 44); the lipid-based
solid lipid nanocarriers, liposomes (327), or lipid-like
lipidoids (2); the inorganic nanocarriers, including gold
nanoparticles (179, 221), carbon nanotubes, graphene
(259), nanodiamonds (285), magnetic particles (120),
and liquid metal nanoparticles (244); the macomolecular
assembly-based DNA (53, 306, 416) and protein nano-
carriers (186).

III. PHYSIOLOGICAL BARRIERS AND
DESIGNING CRITERIA FOR DRUG
DELIVERY SYSTEMS

The ability to direct therapeutic levels of drugs to the de-
sired site is a prerequisite to achieve efficacious outcomes in
treating a variety of diseases. Cancer is the best representa-
tive of these diseases, where sufficient accumulation of po-
tent anticancer drugs is the goal for applying nanocarriers.
However, physiology poses different barriers to impede
nanocarriers from realizing this distant goal (177). For a
better concept on how to design cancer-targeting nanocar-
riers, the sequential barriers from extracellular space to in-
tracellular compartments (FIGURE 2) after intravenously ad-
ministering the nanocarriers will be introduced. Corre-
sponding strategies to overcome these barriers will also be
discussed.

A. Extracellular Barriers

1. Nanoparticle-immune system interaction

When the nanocarriers are injected into blood circulation,
rapid adsorption of serum protein onto the nanocarrier oc-
curs. Numerous types of protein, such as fibrinogen, glob-
ulin, and albumin, will form a corona around the nanocar-
riers, a process termed as opsonization. This nanoparticle-
protein complex is very susceptible for uptake by
circulating or residential phagocytes (409, 443). The op-
sonization-internalization mediated nanocarrier clearance
works as the first and major barrier in the blood, causing
�50% loss of the administered dose hours after injection
(286). In addition, the opsonization causes collateral dam-
age to the targeting ligands modified on nanocarriers by
shielding them from interacting with the targeted receptors
(368). Opsonization is affected by surface properties of the
nanoparticles, such as particle size, surface charge, shape,
hydrophobicity, and biological functionalities (101, 175).
Generally, cationic nanoparticles are more susceptible to
MPS clearance than neutral or negatively charged ones
(338). By far, the most well-established strategy for evading
opsonization and MPS is to coat or graft the surface of the
nanocarrier with PEG, a process termed as PEGylation
(146). As for the mechanism for PEGylation, it is generally
thought that the highly hydrophilic PEG could efficiently
capture water molecules and form a hydrating layer on the
nanocarriers, hindering serum proteins from adsorption.
Instead of ascribing the “stealth effect” to protein repel-
lence, a recent report by Wurm and co-workers highlighted

FIGURE 2. Physiological barriers for nanocarrier-based drug delivery system. Nanocarriers enter the sys-
temic circulation by intravenous injection and undergo opsonization by interacting with serum proteins. The
opsonization facilitates nanoparticle clearance by reticuloendothelial system, leading to nonspecific accumu-
lation of nanocarriers in organs like liver and spleen. In the blood flow, fluid dynamics of the nanocarrier
influences their margination towards vascular walls. The low permeability of vascular endothelium poses
another significant hurdle for nanocarriers, especially the tight junctions associated with the blood-brain
barrier. After extravasation into tumor microenvironment, the nanocarreir needs to diffuse through the dense
extracellular matrix against high interstitial pressure to reach the tumor cells. For drugs that work in
intracellular compartments, the nanocarrier needs to be internalized through endocytosis and escape the
endosome to reach other organelles. Even after entering in the cells, the cell membrane-associated multidrug
resistant pumps could also pump out the delivered chemotherapeutics.
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the role of changed composition of remained protein co-
rona (376). The accumulation of a lipoprotein (clusterin)
rather than coagulation-related proteins was shown to be
sufficient for reducing nonspecific uptake. Huang et al.
(203) pioneered the PEGylation approach for cloaking
nanoparticles with PEG and enhancing their circulation
time. Conformations of the PEG on the nanocarrier surface
are significantly affected by PEG density, from the mush-
room conformation (low PEG density) to transition state
(intermediate density), and to the brush mode (high den-
sity) (479). Grafting sufficient density of PEG chains,
preferably high-density PEG, to cover the surface of the
nanocarrier is key for enabling full protection of the
nanoparticle and preventing opsonization (228). In addi-
tion to the classic PEGylation, polymeric PEG substitutes
or new “stealth” strategies based on biomimetic compo-
nents were also demonstrated by different research
groups. Zwitterionic polymers pioneered by Jiang and
co-workers could induce hydration electrostatically and
resist protein adsorption effectively, leading to ultralow
fouling on nanocarriers or implatable devices (182, 498).
Zhang, Gu, and their co-workers recently demonstrated
a strategy harnessing the natural long-circulating capa-
bility of human platelets for evading opsonization (160,
162, 164). Polymeric nanoparticles cloaked by platelet
membranes exhibited reduced macrophage recognition
than the uncoated nanoparticle (11). Using a more direct
approach, Discher and co-workers (356) used a peptide
derived from CD47 on the cell membrane as a “marker of
self.” Modifying nanocarriers with the “self” peptide sig-
nificantly inhibited phagocytosis and prolonged the cir-
culation time.

While it is necessary for cancer cell-targeted nanoparticles
to avoid immune system surveillance, efficient interactions
with immune cells, such as binding or internalization, are
desirable for cancer immune therapy (19, 140). The basic
rationale behind cancer immune therapy is to mobilize the
immune cells to raid cancer cells, an elegant strategy that
has made revolutionary progress towards eradicating exist-
ing cancer cells and preventing future recurrence (142). The
expression of tumor-associated antigens (TAAs), including
neoantigens, proteins expressed from mutated genes, or
proteins with altered modification patterns, could tell can-
cer cells apart from normal cells (380). Nanoparticles de-
liver TAAs to professional antigen-presenting cells (APCs),
like dendritic cells, leading to the presentation of TAA-
derived fragments to T-lymphocytes and activating TAA-
specific cytotoxic T-cells (107). Additionally, adjuvants ca-
pable of magnifying the responses of APCs or T-cell, such as
Toll-like receptor agonists, could be incorporated into the
nanocarriers (250). Small nanoparticles (ideally 10–40 nm)
generally exhibit more efficient infiltration into the immune
organs and generate stronger interaction with dendritic
cells (384). In this way, nanomedicine serves as “cancer
vaccine.” In addition to delivering TAAs, blocking the in-

hibitors of T-cell activation, such as transforming growth
factor-� (TGF-�), CTLA4, and PD-L1, also emerged as an
effective approach for cancer immune therapy (72, 320,
445). Monoclonal antibodies towards checkpoint inhibi-
tors, including Ipilimumab (target CTLA4), Nivolumab,
and Pembrolizumab (target PD-1), were approved by FDA,
and the PD-1 antibodies were further designated as “break-
through therapy.”

2. Hemodynamics

In cases where nanocarriers escape MPS internalization, the
nanocarriers need to interact with vascular endothelial
walls, especially at the tumor site, to extravasate into the
tumor tissue. In this process, fluid dynamics of the nanocar-
riers in blood vessels play an important role for the contact
(277). Movements of nanocarriers after administration
could be classified as circulation, margination, adhesion,
and internalization by endothelial cells (75). Among these
movements, margination of nanocarriers towards blood
vessel walls is an important contributing factor for promot-
ing the particle-endothelial cell interaction. Generally, red
blood cells tend to flow in the center of the blood vessel,
forcing platelets to accumulate near the blood vessel walls
(74). As for nanocarriers, their distribution would be signif-
icantly affected by their size and geometry (278). For the
typical spherical nanocarriers, such as small liposomes with
a size of 10–100 nm, a small fraction of the administered
nanocarriers could marginate to blood vessel walls during
circulation (418). Anderson and co-workers (75, 475) dem-
onstrated a synthetic lipid-based nanoformulation that
could complex small RNA therapeutics into multi-lamellar
liposome-like structure with sizes ranging from 35 to 60
nm. The nanocarrier efficiently avoided the capture by im-
mune cells or hepatocytes and shuttled the RNA cargo into
endothelial cells as well as solid tumors in the lung (75,
475). Aside from size, this margination could be enhanced
by tuning the geometries of the nanocarriers. For example,
discoidal or ellipsoidal nanocarriers could tumble and roll
during circulation, and the nanoparticles could oscillate be-
tween opposite sides of the blood vessel walls, increasing
the chance of contacting endothelial cells (33). It has been
reported that the aspect ratio of these particles correlates
with their drifting velocities toward the vessel walls, affect-
ing their adhesion and accumulation at tumor sites (413). In
a recent report, drug-conjugated poly(L-glutamic acid) re-
leased in situ from a micro-size vascular depot could self-
assemble into nanoparticles (472). This dynamic strategy
improved vascular dynamics of the nanopartilce and en-
hanced its tumor tropism.

3. Abnormal vasculature: EPR effect and interstitial
fluid pressure

While the sealing of endothelial cells by tight junction pro-
teins formed the blood-brain barrier (BBB) (305), the ag-
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gressive angiogenesis of the tumor generates tortuous blood
vessels with leaky “gaps” (63, 455). Nanocarriers could
extravasate into the tumor microenvironment through the
leaky vasculature and remain there due to reduced lym-
phatic drainage (253). In addition to the traditional concept
of “static gaps,” recent studies further support the EPR
effect with “dynamic vents” that formed spontaneously
along the tumor vessels, allowing the extravasation of
nanoparticles (70 nm) into the interstitial space (264). EPR
effect has become the number one principle for designing
nanocarriers in drug delivery as it is highly strong in can-
cers. Numerous nanocarrier-based anticancer DDSs based
on the EPR effect have been approved for clinical use, such
as the liposome nanocarrier encapsulating doxorubicin
(Doxil) or the paclitaxel-albumin stabilized nanocarrier
(21, 91). However, challenges remain for harnessing the
EPR effect for anticancer therapy. A tumor is not a homo-
geneous tissue; both tumors in clinical circumstances and in
animal models are highly diverse (126). Vascular densities
vary with the stages of the cancer as well as the types of the
tumors (153, 251). Tumors with a high-density vasculature,
such as renal cell carcinoma or hepatocellular carcinoma,
tend to have a high EPR effect, while those with a low-
density vasculature, such as prostate or pancreatic cancers,
tend to exhibit low EPR effect (108). To conquer the heter-
ogeneity of the EPR effect, methods for increasing blood
pressure with angiotensin II (252) or vascular normaliza-
tion (42) were demonstrated. Rather than increasing vascu-
lar pressure, a strategy for improving vascular permeability
with TGF-� inhibitor was also proposed by Kataoka and
co-workers (40). The uneven vasculature of tumors
brings about the EPR effect as a powerful tool for cancer-
targeted drug delivery. However, the same mechanism
could also cause the extravasation of an excessive volume
of fluid into the tumor microenvironment, increasing in-
terstitial fluid pressure (IFP) and viscosity (458). Other
tumor-associated factors could also contribute to the IFP,
such as the poor lymphatic drainage (421), steric stress
from the aggressively proliferating cancer cells, consider-
able fibrosis, and compact extracellular matrix. The in-
terstitial blood flow is the major force for distributing
nanoparticles in the tumors. However, the elevated IFP
poses a barrier for the extravasation and diffusion of
nanoparticles to different regions of the tumor, especially
to the tumor parenchyma, leading to reduced yet hetero-
geneous drug delivery and compromising therapeutic ef-
ficacies (402). To overcome the IFP barrier, strategies
targeting the IFP inducing factors were demonstrated,
such as reducing angiogenesis by blocking VEGF (188,
417) and reducing collagen density in the extracellular
matrix (52). Overall, the EPR effect and IFP constitute
contradictory forces in the process of nanoparticle ex-
travasation into tumor; a balance of these two forces
needs to be taken into consideration for devising effective
solid tumor targeting nanocarriers (394).

4. Extracellular matrix

Nanocarriers that successfully overcome the barrier of vas-
cular endothelial membrane will reach the tumor microen-
vironment and meet the next obstacle, namely, the extracel-
lular matrix (ECM) (242). The ECM is a complex network
composed of various types of networked macromolecules,
including polysaccharides, proteoglycans, proteins, and
glycoproteins (292). The ECM interacts with the tumor
cells in a reciprocal way: the ECM offers a framework af-
fecting tumor morphology and development, the cells are
continuously constructing or rearranging the ECM (35,
324, 349). The physical rigidity of the ECM poses signifi-
cant steric hindrance for nanoparticle diffusion, trapping
the nanoparticles or inducing premature drug release before
reaching the tumor (49). The ECM could be structurally
divided into two parts: the basement membrane and the
interstitial matrix. The basement membrane is constructed
by stroma, epithelial and endothelial cells together to func-
tion as a scaffold for the mural and endothelial cells, while
the interstitial matrix is primarily built by the stroma cells
(358). The basement membrane is a continuous and com-
pact sheetlike structure mainly composed of type IV colla-
gen, fibronectin, laminins with entactin, and nidogen as
linkers (13). Ratios of the constituents vary between differ-
ent tumors or different sections of the same tumor, contrib-
uting to the heterogeneity of tumors. The porous basement
membrane does not elevate IFP and the nanocarriers pene-
trate the basement membrane through passive diffusion.
Penetration efficacies of the administered nanocarriers were
mainly affected by the collagen fiber densities and pore sizes
(4, 226, 403). To overcome the barrier of the basement
membrane, a transient window of basement membrane re-
modeling could be harnessed. The window is created by
angiogenesis, which demands the degradation of type IV
collagen by matrix metalloproteases (MMP2 or MMP9)
(309, 433). Slightly different from the basement membrane,
the interstitial matrix is charged and highly hydrophilic
with primary constituents including proteoglycans, fibrillar
collagens, fibronection, and tenascin C (50, 379). Thick
aligned type I collagen fiber is the main composition of the
collagen. Combined with the restricted volume of intersti-
tial space, the interstitial matrix is denser than the basement
membrane (138). The accumulated tension leads to in-
creased IFP, making it more difficult for nanocarriers to
diffuse through. To overcome this barrier, several strategies
have been demonstrated. For example, degrading the ma-
trix with co-administered collagenase or hyaluronidase (97,
98, 127, 505), dilating the matrix pores by hypertonic so-
lution (267), or decreasing the crosslinking of collagen fi-
bers (255) could all significantly enhance the diffusion of
nanocarriers.

B. Intracellular Barriers

While a small fraction of anticancer therapeutics target spe-
cific receptors on cancer cell membranes, such as antibodies
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and cytokines (210, 311), most drugs need to be delivered
to intracellular targets to exert effect (453). Therefore, fol-
lowing extravasation into the tumor site, it is desirable that
the nanocarriers are capable of shuttling the cargoes into an
intracellular compartment. To reach the targeted subcellu-
lar compartment, more barriers arise from the subcellular
structures of the cells (352).

1. Internalization

Small molecular therapeutics, especially those with high
hydrophobicity, are capable of passively diffusing through
the lipid bilayer plasma membrane (435). However, for
protein or nucleic acid-based therapeutics, nanocarriers are
generally needed for transportation into the cells (133,
318). Numerous internalization pathways exist, and the
entry is affected by various properties of the nanocarrier,
such as particle size, surface charge, physiochemical com-
position, and the modification with targeting ligands (500).
For nanocarriers that are not modified with any specific
targeting ligand, the uptake is mainly through endocytosis
(387), where vesicles emerge from plasma membrane to
encapsulate and internalize the nanoparticles together
with extracellular fluids. Size plays a major role in demi-
ning the endocytosis pathway. Large particles (up to 1
�m) usually enter the cells by macropinocytosis, and the
clathrin-dependent pathway generally takes up nanopar-
ticles smaller than 120 nm (67, 270). Smaller nanoparticles
could be internalized through the caveolae-dependent path-
way (50–100 nm) or the clathrin- and caveolae-indepen-
dent pathway (�50 nm) (1). The size cut-off is indefinite,
and surface chemistries significantly affect internalization
pathways. Also, the internalization pathways are not exclu-
sive; therefore, a specific type of nanocarrier could be inter-
nalized through a combination of several pathways (473).
In addition to size, extensive research efforts have been
devoted to optimizing geometrical properties of nanocarri-
ers for enhanced cellular uptake (152, 280, 334). Due to the
negative charge of phospholipids, positively charged nano-
carriers generally show stronger interaction with plasma
membranes, leading to increased internalization (378). In
addition to tuning the physical properties of nanocarriers to
increase endocytosis, specific receptors overexpressed on
cancer cell membranes could also be exploited for facili-
tated and selective internalization. For example, epidermal
growth factor receptor (EGFR) (364), folate receptor (429),
transferrin receptor (491), lectins (339), and low-density
lipoprotein receptor (233) are well-characterized receptors
to induce efficient cellular uptake. Different types of target-
ing ligands, including small molecules (480), antibodies
(346), peptides (396), and aptamers (470) can be easily
functionalized onto the surface of the nanocarriers (27,
390). For example, the folate receptor is a commonly over-
expressed receptor by many types of cancers. Modifying
high concentrations of the small molecule ligand folic acid
onto a DNA nanocarrier was demonstrated to facilitate the
intracellular delivery of siRNA (223).

2. Endosome/lysosome escape

After internalization of the nanoparticles through plasma
membrane invagination, as in the case of the classic clath-
rin-mediated endocytosis, the nanocarriers are generally
trapped inside the vesicles that help them enter the cells,
known as endosomes (124, 366, 464). As the endosome
matures, it tends to traffic toward and fuse with the lyso-
some, where the acidic and enzyme-rich environment
would lead to the degradation of the nanocarrier as well as
the cargoes (381). Meanwhile, the trafficking of nanocarri-
ers from late endosome to extracellular space through recy-
cling pathways, as in the case for cationic lipid nanocarri-
ers, further limits the cytosolic availability of delivered
drugs (366). The endo-lysosome entrapment poses the most
critical barrier for the intracellular drug delivery, especially
for macromolecular therapeutics. To overcome this barrier,
various endosome escape agents derived from viral or bac-
terial invasion machineries were utilized for nanoparticle
escape from the endosome membrane (99, 442, 465). The
methods for endosome escape could be further classified
into different mechanisms, such as proton-sponge effect
(25), nanoparticle-endosome membrane fusion (307, 474),
and photochemical disruption (198). Acidification of the
endosome plays an important role for cellular uptake of
nanoparticles (366, 464), towards which the proton-sponge
effect is a widely adopted approach that is generally inte-
grated with polyamine-based polymers with a pKa range of
5–7 (314). These polymers are able to buffer the acidifica-
tion of the endosome, increasing the influx of ions into
endosomal compartments and causing rupture of the endo-
some membranes. The most representative example of this
type of polymer is polyethylenimine (PEI), a potent trans-
fection reagent for genetic engineering of various types of
cell lines (159). For the membrane fusion-based mecha-
nisms, fusogneic lipids or peptides are usually incorporated
into the nanocarriers. The popular fusogenic lipid 1,2-dio-
leoyl-sn-glycero-3-phosphoethanolamine (DOPE) is an acid-
responsive lipid that undergoes a phase transition from
bilayered to hexagonal conformation for fusing with endo-
some membrane (385). In addition to phase transition, ion-
izable lipid with optimal pKa around 6.2–6.5 was proposed
to be effective in promoting membrane fusion (124, 464).
Endosome acidification would trigger the formation of ion
pairs between the lipid and endosome membrane, promot-
ing lipid exchange and drug release into the cytosol. It has
been recognized that the pKa and hydrophobicity of the
lipids are crucial properties for preparing efficient intracel-
lular DDSs (3, 302), and the balance between pKa and hy-
drophobicity has become a guideline for synthetic lipid and
polymeric carriers (144, 180, 506). Fusogenic peptides in-
spired from the viral capsids, such as KALA or H5WYG,
also exhibit structural changes in the acidic environment of
the endosome (336). The negatively charged or neutral pep-
tides will transform from random coils into rigid and hy-
drophobic helixes to insert into the membrane of the endo-
somes. Another applicable approach for inducing endo-
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some escape in a spatial-temporally controlled manner
involves photosensitizer-mediated photochemical therapy
(56). Small molecular or polymeric photosensitizers could
generate ROS when excited by externally applied photons,
leading to drastic destruction of the endosome (323). How-
ever, this method is complicated by damaging the delivered
cargoes.

In addition to the various methods for disrupting the endo-
some membrane, an emerging facile strategy is to bypass the
endolysosome. Different endocytic pathways lead to dis-
tinct intracellular fate of nanoparticles; endosomes gener-
ated by the caveolae-mediated endocytosis tend to fuse with
caveosomes and bypass the lysosome fusion (365). A rep-
resentative nanoparticulate system is the spherical nucleic
acids, which use highly organized nucleic acid oligos to coat
the surface of gold nanoparticles covalently (360). Instead
of being internalized through the classic clathrin-mediated
endocytosis, this nanoparticle binds the class A scavenger
receptor on cell membrane and gets endocytosed through
caveolae and lipid raft-mediated pathway, arriving at early
endosome (57). Then, through a not yet well-characterized
mechanism, possibly associated with the sorting of nano-
particles towards Golgi apparatus or endoplasmic reticu-
lum (354), this nanoparticle could be trafficked to the cyto-
sol without the assistance of endosome escaping agents.

Of note, in spite of all the difficulties of getting nanopar-
ticles out of endosome entrapment, the endosome is not
merely a trap. If the timing of endosome escape could be
fine-controlled, endosomes could offer a fast ride along the
cytoskeleton to move the nanoparticles closer to the interior
of the cells (351). Even though most endosome vesicles end
up fusing with lysosomes, endosomes are capable of shut-
tling the cargo to different subcellular organelles, such as
the Golgi apparatus, the mitochondria, and the endoplas-
mic reticulum (172, 459). This feature would be very useful
for nuclei-targeted gene delivery, since the endosome-as-
sisted migration towards the nuclei would be more efficient
than passively diffusing the nucleic acid through the cyto-
plasm (469).

3. Nuclear import

The nucleus stores genetic information of the cells, where
many therapeutic targets are located (406). In a nondividing
cell, the nucleus is wrapped in a double-layered lipid enve-
lope, where the pores on the membrane regulate the traffic
in and out of the nucleus. Generally, molecules smaller than
5 nm (approximately the size of a 40-kDa protein) could
diffuse through the pores passively, while larger ones (up to
39 nm in diameter) need to be transported actively by the
importing machineries (206, 232). The low efficiency of
nucleus entry from the cytosol becomes a bottleneck for
nucleus-targeted gene therapies (79). To overcome this bar-
rier, nuclear localization sequences (NLS) are often fused
with targeted proteins (204), attached to desired plasmids

(395) or nanoparticles (316) for facilitating nucleus trans-
port. The NLS interacts with the nuclear pore associated
proteins, including importin � and �, and form a protein
complex that could be pulled into the nucleus by the nuclear
pore complex (178, 450). The most popular NLS was de-
rived from the large T antigen protein of SV40 virus, and it
is capable of enhancing nuclear transport efficiency of plas-
mid by 10- to 1,000-fold (495). Other available NLS in-
clude peptides derived from importin � (373) or the NH2

terminus of yeast transcription factor GAL4 (46). An alter-
native strategy to NLS for nuclear-targeted plasmid delivery
borrows the transportation of endogenous transcription
factors (145). By coding a sequence that could bind consti-
tutively expressed transcription factors, such as NF-�B, into
the plasmids, transcription factor facilitated nuclear trans-
port could be achieved (213). A general sequence, desig-
nated as “nuclear targeting sequence,” that can bind vari-
ous types of transcription factors was derived from SV40
enhancer, which could serve as a universal strategy for fa-
cilitated nuclear delivery (123). Furthermore, due to the
characteristic expression of transcription factors in differ-
ent cell lines (404), selective nuclear transport in desired
cells could also be achieved by coding the selected transcrip-
tion binding sequence.

4. Drug efflux pumps

After overcoming the multiple barriers, the administered
drugs finally reach the desired intracellular loci of the tar-
geted cell. The delivery task may still fail, especially for
chemotherapeutics, due to the potential drug resistance of
the cells. Drug resistance develops either intrinsically before
administering the therapeutics or externally after extended
exposure to chemotherapeutics (48). The chemotherapeutic
resistance stems from complex mechanisms that involve
defects in the apoptosis machineries, induction of alterna-
tive DNA repair pathways, structural changes of the drug
targets, and elevated expression of drug efflux pumps (38).
Among the different mechanisms, the drug efflux pump is
the most significant barrier that could pump out not only
the administered drugs but also a wide range of therapeutics
with structural similarities, leading to multidrug resistance
(MDR) (86, 371, 392). The MDR could remarkably reduce
intracellular drug concentrations and compromise the ther-
apeutic efficacies. Classic MDR pumps are comprised of
proteins from the superfamily containing ATP-binding cas-
sette (ABC) (100). Representative pump proteins include
the P-glycoprotein, where the P stands for permeability
(187); the breast cancer resistance protein (BCRP) (54); and
the multidrug resistance-associated protein (MRP) (65).
The P-glycoprotein mainly pumps cationic and lipophilic
drugs, the BCRP mainly transport anions, and the MRP
binds substances somewhere in between (208). To over-
come the MDR, viable strategies involve optimizing the
nanocarrier compositions or co-delivering different agents
for bypassing MDR pump recognition, inhibiting trans-
porter activity or its expression (165). For example, nano-
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carriers based on the amphiphilic copolymer Pluronics
could abrogate MDR through several well-studied mecha-
nisms: the polymer could be incorporated into cell mem-
branes and alter its viscosity; it could lower the activity of
the MDR pumps by reducing intracellular ATP level; it
could enhance apoptosis signaling by triggering the release
of cytochrome c as well as reactie oxygen species (ROS);
and it could also avoid intracellular vesicle entrapment of
the nanoparticles (24). Many other nanomaterials that
could avoid the MDR were also demonstrated, such as
DNA origami (181), guanidinium modified polyphospho-
ester (268). For co-delivering MDR regulating therapeutics,
small molecular MDR modulators, such as the P-glycopro-
teins inhibitors verapamil (446) and tariguidar (325) or the
BCRP inhibitor CG918 (467), could significantly reduce the
transportation as revealed from the 10- to 100-fold de-
crease in IC50 values. Similarly, co-encapsulating siRNA to
target the MDR transporter could also help reduce the
MDR (272).

C. Designing Criteria of Nanocarriers for
Drug Delivery

The journey of the nanocarriers from the syringe to the
targeted site is full of barriers, leaving only a small fraction

of those “lucky” nanocarriers reaching the destination. Ad-
vances in material science have enabled researchers with the
ability to precisely manipulate the properties of nanocarri-
ers in terms of their material composition, size, shape, and
surface properties (FIGURE 3) (5, 254, 297). To provide a
straightforward concept of how to prepare efficient nano-
carriers, we have summarized the preferred values for these
parameters as below.

1. Size

To prepare nanoparticulate carriers for drug delivery, size is
the parameter of top priority that needs to be controlled
within the optimal range. To obviate the complication of
shape, we will use spherical nanocarrier as a model to dis-
cuss the size preferences of nanocarriers for anticancer ther-
apies. Nanocarriers that are too small (�10 nm) are easily
cleared from the circulation through glomerular filtration
(410), while nanocarriers that are too large (�2 �m) tend to
clog the blood vessel due to the limited diameter of the
capillaries (�5 �m) (332). For tumor-targeted nanocarri-
ers, the size should be tailored to fit the EPR effect, which
limits the particle size within 500 nm (492) and preferen-
tially greater than 200 nm (154). Nanocarriers larger than
200 nm also risk clearance by other organs, such as liver,

FIGURE 3. Parameters for nanoformula-
tion design. Properties of the nanocarrier
could be tailored modularly from the per-
spective of size, material composition,
shape, surface chemistry, and targeting li-
gand conjugation to overcome the sequen-
tial physiological barriers for precise drug
delivery.
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spleen, or lung, reducing their circulation half-time. In ad-
dition to tumor accumulation, the ability to penetrate dense
solid tumors makes nanocarriers within sub-100 nm range
more efficient carriers. A systemic investigation of mono-
dispersed silica-based nanocarriers with three different sizes
(20, 50, and 200 nm) showed that nanocarriers of 50 nm
diameter showed the highest tumor accumulation and pen-
etration efficacies, more efficient than nanocarriers near the
lower and higher size limits (407). Overall, nanocarriers
within the size range of 10–200 nm, preferentially smaller
than 100 nm (51), are typically suitable for tumor targeted
drug delivery.

2. Shape

Emerging studies on the effect of nanocarrier shapes re-
vealed that the shape could significantly affect the delivery
efficacy from multiple aspects of the delivery process, in-
cluding circulation, extravasation, and internalization by
targeted cells (166, 408, 422). Currently, nanospheres,
nanodiscs, nanorods, and nanocylinders are among the
most investigated geometries. From the perspective of cir-
culation, nanocarriers with a cylindrical (122) or disclike
(296) structure showed distinct hemodynamic patterns ver-
sus spherical ones; circulation half-time could be enhanced
either by orienting the nanocarrier to follow blood flow or
by tumbling in the blood vessels. In addition, the shape of
the nanocarriers affects macrophage recognition (45), fur-
ther affecting the biodistribution patterns. For targeted in-
ternalization by cancer cells, nanocarriers with a bacteria-
like rod shape, such as gold nanorods (313) and silicon
nanorods, generally demonstrate higher intracellular up-
take efficiencies than their spherical counterparts possibly
due to the evolved machineries in mammalian cells against
bacteria. Particularly, nonspherical nanocarriers have
shown the potential to exhibit better drug delivery efficacies
than spherical nanocarriers, which makes shape an applica-
ble parameter for nanocarrier optimization. To fully utilize
the benefits of shapes for optimized drug delivery, emerging
strategies that use morphologically transformable nanocar-
riers were demonstrated (239, 399). For example, a nano-
carrier capable of transforming from nanodisks to nano-
spheres upon environmental triggers, including pH, or
chemicals, could take advantage of the elliptical disc shape
to avoid macrophages and utilize the spherical shape for
internalization (485).

3. Surface charge

Due to the negative charge of cell membranes (482), posi-
tively charged nanocarriers typically exhibit superior in
vitro internalization efficacy versus negatively charged or
neutral ones (148, 197). This phenomenon holds true for
numerous types of cell lines, including macrophages or can-
cer cells (437). Generally, positively charged nanocarriers
were endocytosed through the clathrin-dependent pathway

while negatively charged nanoparticles tend to be internal-
ized through the caveolae-mediated pathway (147, 365).
However, for in vivo administration, the positive charge on
nanocarriers could easily attract serum proteins, which are
mostly negatively charged, to form protein corona, increas-
ing the risk of being cleared out by immune cells. In addi-
tion, the high positive charge also risks disrupting platelets
and causing hemolysis (14, 490). In view of this, negatively
charged or neutral nanocarriers are better choices for long
circulation. To balance the need of long circulation and
enhanced cellular uptake, a popular strategy called “charge
reversal” was incorporated into many nano-particulate sys-
tems (471). For this strategy, the nanocarriers were tailored
to maintain a neutral or slightly negative charge while in
circulation but shift to a positive charge when reaching the
tumor microenvironment. Generally, the acidic extra-tu-
moral microenvironment is used as a trigger to cause the
shedding of the negatively charged shells from the positively
charged cores (143); or switching the charge of a synthetic
peptide, where the isoelectric point could be tuned (168).

4. Surface composition

Since the surface of nanocarriers is the frontier part that
contacts the cells, interaction from the surface components
with cells would affect the fate of the delivery process. For
example, cellular internalization could be significantly af-
fected by the hydrophobicity or hydrophilicity of the sur-
face and hybrophobic nanocarriers could be easily internal-
ized (301). In this case, the classic PEGylation strategy dra-
matically increases the hydrophilicity of the surfaces and
elongates their circulation time. Complementary strategies
to the PEGylation strategy to further reduce the chance of
being cleared out by the complement system have been sug-
gested to modify surface of the nanocarriers with self-mark-
ers, such as factor H or CD 47 (271) or use naturally derived
cell membranes (160, 164). Besides avoiding macrophage
recognition, the existence or absence of targeting ligands on
nanocarrier surfaces could influence their adhesion and en-
try into targeted cancer cells. The overexpressed receptors
on tumors as well as vascular proximal endothelial cells
make targeting ligands a favorable component for targeted
delivery with improved precision (405). However, it is nec-
essary to keep in mind that healthy cells also share the
receptors of the tumor cells albeit at a lower expression level
(88, 245). Significant damage by the targeting ligand still
exists.

5. Elasticity and degradation

Elasticity of the nanocarriers is another parameter that
could be tuned to optimize the delivery efficacy (10, 90). It
has been demonstrated that the energy cost of wrapping up
a nanoparticle by the cell membrane decreases as a function
of increased stiffness (483), making rigid nanoparticles eas-
ier for cellular uptake. However, rigid nanocarriers are eas-
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ily cleared out when administered in vivo. In comparison,
elastic nanocarriers exhibit better circulation performances
in a way similar to red blood cells (RBC) (70), where the
elastic RBC could be easily deformed to squeeze through
blood vessels even narrower than their diameter. So, en-
hancing the elasticity of the nanocarriers is a straightfor-
ward option for improving the circulation of the nanopar-
ticles. Biodegradability is another important consideration
for designing nanocarriers from the perspective of drug re-
lease efficacy as well as biocompatibility. When degrada-
tion or dissociation of the nanocarrier is needed to release
the encapsulated drug, methods to maintain the drug in the
carrier during circulation but release it after arriving at its
destination become important for efficient drug delivery
(468). In this case, functional moieties that could be de-
graded by specific signals in the tumor microenvironment
could be incorporated into the nanocarriers to control the
drug release (502). For the issue of biocompatibility, it is
preferable to use nanomaterial that could be degraded into
nontoxic products. However, for nondegradable nanocar-
riers, such as metallic-based nanocarriers, it is desirable that
the nanocarriers could be cleared out of the body after
finishing the mission of delivery (488). As an example to
address the issue, Chan and co-workers (59) have demon-
strated a strategy of combining biodegradable DNA into
metallic nanocarriers, making the nanoassembly disso-
ciable into smaller nanocarriers for clearance.

Designing nanocarriers for efficient drug delivery is a com-
prehensive task that needs to take the considerations of
multiple criteria associated with physiology into a single
formulation. In the next section, we will discuss some ex-
emplary strategies for preparing “smart” formulations that
can leverage the physiological signals in the diseased tissue
for controlled release of therapeutics.

IV. SMART DRUG DELIVERY SYSTEMS
MEDIATED BY PHYSIOLOGICAL
SIGNALS

To achieve nanocarrier-mediated drug delivery with higher
spatial-temporal precision, bio-inspired strategies that en-
dow the delivery vehicles with the capability of interacting
with physiological environment and determining when and
where to release the payload are gaining increased interest
(TABLE 1). To design these “smart” formulations, stimuli-
responsive moieties that translate physiological signals at
tumor microenvironment into behaviors of the nanocarri-
ers, such as swelling, degradation, morphological change,
and charge reversal, have been developed (FIGURE 4). Nano-
medicine responsive to physiological stimuli, including
acidic pH, overexpressed enzymes, redox gradient, or ele-
vated metabolite concentrations, holds great promise for
improved anticancer efficacy (FIGURE 5). They could exhibit
better pharmacokinetic profiles with reduced concern of
premature drug leakage during circulation and improved

tumor targeting efficacies, where a higher percentage of the
administered drug would be accumulated in the targeted
cells.

A. Nanomedicine Responsive to Physiological
Triggers

1. Acidic environment

Local decrease of pH in different tissues (such as the GI tract
and vagina), subcellular compartments (such as the endo-
some and lysosome), or disease-associated conditions (such
as infection, inflammation, and tumor microenvironment)
provides a reliable signal to trigger the drug release from the
DDSs. For tumors, the abnormal metabolic activities, like
the elevated rate of glycolysis, together with poor lymphatic
drainage lead to the accumulation of lactic acid. Tumor-
targeted nanocarriers will experience subtle pH changes
when they extravasate from the blood circulation (pH 7.4)
to the extracellular space of tumors (pH 6–7.2) (103).
Nanocarriers internalized into intracellular space will un-
dergo a further decrease of pH in endosomes (pH 5.0–6.0)
and lysosomes (pH 4.0–5.0) (113). To harness the pH gra-
dient, numerous pH-responsive formulations have been de-
veloped based on two mechanisms: 1) incorporating proto-
natable polymers (such as polyacids, polybases, or poly-
amino acids) that could allow solubility or conformational
changes upon acid stimulation; 2) utilizing acid-labile moi-
eties (like bicarbonate salts), or acid-cleavable bonds (such
as hydrazine, acetal and ester) to enable disruption of the
nanocarrier in acidic environments (317).

The subtle pH difference between blood circulation and
extracellular space of tumors is often utilized as a cue to
activate the nanocarriers for better tumor penetration or
cancer cell internalization, such as shedding the stealth
coating, exposing the cell penetrating peptide, or converting
the surface charge. For example, Hammond and co-work-
ers (341) demonstrated a sheddable layer coated nanocar-
rier prepared by a layer-by-layer deposition technique for
acidity-triggered internalization in vivo. A stealth layer
composed of PEG was coated onto the positively charged
inner layer consisting of PLL through the modified linkers:
iminobiotin and neutravidin. The iminobiotin-neutravidin
bond is stable at alkaline conditions (pH 8–12), but it is
easily dissociated at acid pH (4–6). Cloaking the positive
charge of PLL by PEG could reduce the incidence of non-
specific uptake during circulation. However, when accumu-
lated in the tumors, interaction between the iminobiotin
and neutravidin is compromised upon exposure to the
acidic tumor microenvironment, exposing the positively
charged PLL layer for facilitated cellular uptake. By incor-
porating amino acids, including glutamic acid (Glu) and
histidine (His), into the polymer backbone composed of
PEG, Kempson and co-workers (424) prepared the polymer
poly(PEG-His-Glu) with tunable pH-induced charge rever-
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Table 1. Summary of exemplary physiological stimuli-responsive formulations discussed in this review

Stimuli Nanoplatform
Responsive

Moiety/Responsive Type Drugs Target Type
Referene

Nos.

Acidic
environment

Polyelectrolyte/DNA
complex

Peptide/charge reversal for
internalization

Plasmid for gene
therapy/phototherapy

Non-small cell lung
carcinoma

424

Peptide-nucleic acid
conjugate

Peptide/conformational
change for direct
membrane penetration

Anti-microRNA-155 Lymphoma 55

siRNA-conjugated
amino-dextrans

Acetal linkage/endsomal
cleavage for drug release

siRNA — 71

DNA-alkyl conjugate Acetal linkage/targeting
ligand shedding for
endosome escape

Transcription factor
Nrf2

Hepatocytes 224

RBC membrane-coated
polymeric
nanoparticle

Glycerol dimethacrylate/
endsomal degradation for
drug release

DOX/TRAIL Primary and
circulating
tumor

164

Polymer-liquid metal
conjuate

Liquid metal/fusion and
degradation for ligand/
drug release

DOX HeLa 244

Enzyme
activity

Peptide-dendrimer
conjugate

Peptide/MMP cleavage for
internalization

Plasmid encoding
siRNA/DOX

U-87 malignant
glioma

167

PEG-drug conjugate Peptide/MMP cleavage-
mediated PEG shedding
for internalization

PTX Non-small cell lung
cancer

508

Capped MSN Peptide/MMP cleavage for
drug release

Cisplatin Lung cancer 432

Modified graphene oxide Peptide/furin cleavage for
sequential drug release
and internalization

DOX/TRAIL Lung cancer
A549

185

Gel-coated liposome Hyaluronic acid/HAase-
mediated drug release
and internalization

DOX/TRAIL Breast cancer
MDA-MB-231

183

Peptide-modified
liposome

Peptide/legumain cleavage
activated internalization

DOX Breast and lung
cancer

238

Polymeric nanogel Peptide/furin cleavage for
drug release

Caspase-3 Hela 31

Polymer/DNA complex Peptide/kinase-mediated
charge reversal for drug
release

Plasmid B16 melanoma 192

Quinone-modified
liposome

Trimethyl quinone/quinone
reductase cleavage for
drug release

Calcein — 308

Reducing
gradient

Capped MSN Disulfide/GSH cleavage for
drug release

DOX Hela 249

PEG-dendrimer
conjugate

Disulfide/PEG shedding for
internalization

DOX/siRNA B-cell lymphoma 2 448

Polymer nucleic acid
conjugate

Disulfide/drug release siRNA HeLa 94

Polymeric nanogel Disulfide/nanoparticle
degradation for drug
release

P53 Breast cancer 503

Polymer/DNA complex Disulfide, diselenide/drug
release

DNA HepG2 150

Pillararene assembly Ferrocenium/polarity
change for assembly
disruption

DOX/siRNA HeLa 47

ROS Polymer/nucleic acid
complex

Thioketal/drug release siRNA Intestinal
inflammation

462

Liposome Aryl boronic ester/protein
activation

RNAse A 449

Peptide-drug conjugate Boronic acid/activated
internalzation

Imaging agent Leukemia 454

Continued

LEVERAGE PHYSIOLOGY FOR DRUG DELIVERY

201Physiol Rev • VOL 97 • JANUARY 2017 • www.prv.org
Downloaded from journals.physiology.org/journal/physrev (059.148.143.047) on January 14, 2021.



Table 1.—Continued

Stimuli Nanoplatform
Responsive

Moiety/Responsive Type Drugs Target Type
Referene

Nos.

Polymer-conjugated
nanocrystal

Thiolesters/polarity change
for assembly disruption

PTX 117

Ferrocenium-modified
polymeric assembly

Ferrocenium/polarity
change for assembly
disruption

Pyrene 391

Hypoxic
condition

Polymer/nucleic acid
complex

Azobenzene/PEG shedding
for internalization

siRNA HeLa 333

Modified dextran
nanoparticle

2-Nitroimidazoles/polarity
change for drug release

DOX Squamous
carcinoma

411

ATP gradient HA nanogel-coated DNA
duplex

ATP aptamer/drug release DOX Breast cancer 282

Graphene oxide
aggregate

ATP aptamer/aggregate
disassembly for drug
release

DOX HeLa 284

Capped MSN Zn2�-dipicolylamine/drug
release

DOX, CPT HeLa 212

Polymer/nucleic acid
assembly

Phenylboronic acid/drug
release

siRNA 300

Protein assembly ATP consuming protein/
conformational change for
assembly disruption

Imaging agent HeLa 32

Synergistic
multi-stimuli

Polymeric micelle Ketal�disulfide/pH- and
acid-responsive micelle
degradation

DOX HeLa 246

Polymer-drug conjugate Aromatic ester � aliphatic
ester/redox and esterase
facilitated drug release

Aspirin, cisplatin Prostate and
cisplatin-
resistant ovarian
cancer

326

Polymer nanoparticle Thioketal � chitosan/ROS-
and acid-triggered
conformational change for
drug release

Curcumin Ankle inflammation 347

Polymer-drug conjugate-
based micelle

Thioester � phenol ester/
ROS and redox responsive
drug release

SN38 Breast cancer 447

Sequential
stimuli

Capped MSN Peptide � disulfide/MMP
and redox sequentially
activated internalization
and drug release

DOX Squamous cell
carcinoma and
human colon
cancer

497

Polymeric nanoparticle Calcium phosphate � HA/
pH and HAase-triggered
sequential release of
siRNA and DOX

siRNA/DOX Ovarian cancer 58

Liposome Fusogenic lipid � ATP
aptamer/pH and ATP
sequentially triggered
endosome escape and
drug release

DOX Breast cancer 283

DNA nanoparticle Glycerol dimethacrylate �
DNA/pH and DNase
sequentially triggered
drug release

DOX Ovarian cancer 400

Polymeric nanoparticle HA � human serum
albumin � glycerol
dimethacrylate/HAase,
transglutaminase and pH
sequentially triggered
extracellular aggregation
and release of drug

TRAIL/cilengitide Breast cancer 163

Polymeric micelle Glucose oxidase �
2-nitroimidazoles/glucose
and hypoxia sequentially
triggered drug release

Insulin Diabetes 487
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sal properties for enhanced anticancer gene delivery.
Charge behavior of the nano-formulation is dictated by the
interaction between the three polyelectrolytes: the nega-
tively charged DNA, positively charged PEI, and the charge
reversible poly(PEG-His-Glu). The researchers tuned the
ratio of the three components and demonstrated that the
protonation of amino acids at acid environment (pH 6.8)
could reverse the charge of the nanocarrier from negative
(pH 7.4) to positive, facilitating intracellular uptake. An
acid-dependent uptake profile was observed for the charge
reversible nanocarrier, while the “always positively
charged” control without the poly(PEG-His-Glu) shell did
not show any difference with varying pH. The charge rever-
sal enabled systemic administration of the nanocarriers,
and a single injection induced the therapeutic level expres-
sion of the anticancer protein in the tumor. Besides activat-
ing the electrostatic interactions between nanocarriers and
cell membranes, acidity-triggered conformational change of
peptide was also proven to be an efficient way for tumor-
targeted delivery. Slack and co-workers have demonstrated
the application of a peptide that could fold into a rigid
�-helix in an acidic environment, named the pH low inser-
tion peptide (pHLIP), for targeted delivery of anti-mi-
croRNA (55). During circulation, the random morphology
of the peptide made it impermeable to the cell membrane,
reducing nonspecific internalization and achieving passive
accumulation in tumors. The acidic extracellular space of
the tumors induced the folding of pHLIP, which was later
inserted into the cancer cell membranes and translocated

into the cytosol via an endocytosis-independent way. By
appending a neutrally charged peptide nucleic acid (PNA),
which was designed to absorb the oncogenic microRNA-
155 in cancer cells, the researchers showed that the pHLIP
could shuttle the PNA cargo into the cytosol of cancer cells
in vivo with high tumor specificity.

In addition to the extracellular acidity-activated cellular
uptake, the stronger acidity of intracellular vesicles is gen-
erally utilized to activate intracellular trafficking or degrade
the nanocarriers for drug release. Davis and co-workers
(64) demonstrated a nano-formulation with an intracellu-
larly sheddable targeting ligand to overcome the BBB. The
receptor-mediated transcytosis was harnessed for travers-
ing the BBB, and the protein transferrin was modified as
targeting ligand onto 80-nm gold nanocarriers via an acid-
degradable linker. Binding to the transferrin receptor on the
blood side initiated the transcytosis, where the acidification
in the vesicles cleaves the acid labile linker and releases the
gold nanocarriers to the brain side. Furthermore, it was
shown that formulations with the acid-cleavable linker
showed much higher transcytosis efficacies than the non-
cleavable counterparts. Fréchet and co-workers (71) de-
signed acetal linked amino-dextrans for efficient and acid-
cleavable delivery of siRNA, the acetal linker between
siRNA and the modified polysaccharide allowed fast release
of the siRNA cargo upon endosomal acid degradation. In
another intracellular acidity trigger trafficking system,
Murthy and co-workers (224) devised a DNA-based nano-

FIGURE 4. Mechanisms of stimuli-re-
sponsive nanocarrier for drug delivery. The
drugs could be released from the nano-
carrier upon physiological signal-trig-
gered degradation (A), swell or shrink (B),
dissociation (C), and uncapping the pores
of mesoporous silica nanoparticles (D). E:
nanocarrier activation for cell penetration
with exposed moieties.
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carrier that could shed the modified targeting ligands after
being internalized into endosomes and expose the mem-
brane disruption moieties for endosome escape. Compared
with the acidity-assisted intracellular trafficking, endolyso-
somal acidity-triggered drug release has been explored
more prevalently. Unlike conventional nanocarrier degra-
dation through the cleavage of labile linkers, a novel strat-
egy utilizing the acid response of liquid metal was demon-
strated recently as a viable approach for mediating acid-
triggered drug release as well as clearing metallic
nanocarriers from the body (244). In this system, Lu et al.
(244) applied a eutectic metal alloy (gallium and indium)
that behaves like liquid with low viscosity at room temper-
ature to prepare nanocarriers. The liquid metal was soni-
cated into nanocarriers and stabilized with thiolated li-
gands, such as thiolated (2-hydroxypropyl)-b-cyclodextrin
for drug loading and thiolated hyaluronic acid for tumor
targeting. The ligand-modified liquid metal nanocarrier
could target the cancer cells after systemic administration
and enter the cells through macropinocytosis. The endo-
somal acidity will then induce the fusion of the liquid metal,
shedding the modified ligands as well as the drug contained
in the ligand. The released model drug DOX then diffused
into the nucleus of the tumor cells and caused massive re-
mission as evidenced from histological analysis. Unlike Hg,
this liquid metal is highly biocompatible. Toxicological
analysis of the empty nanocarriers in mice models did not
reveal any detectable damage to platelets or tissues (such as
liver or kidney) over the period of 3 months. Furthermore,

corrosive products of the liquid metal also helped reverse
drug resistance of cancer cells.

2. Enzyme activity

Pathological conditions, such as inflammation or cancer,
are often associated with elevated expression of certain hy-
drolytic enzymes (including protease, phospholipase, or
glycosidase) when compared with normal states (112, 129,
275). Enzymes secreted into the extracellular matrix of tu-
mors, such as matrix metalloproteinase (MMP), phospho-
lipase, hyaluronidase, and gelatinase, generally contribute
to the aggressiveness of cancers. They are among the most
intensively investigated triggers for tumor-targeted drug de-
livery, such as activating cellular internalization moieties or
triggering drug release extracellularly. Similarly, character-
istic intracellular enzymes of cancer cells, such as furin,
kinase, esterase, and cathepsine (258, 434), were also dem-
onstrated as possible cues. Substrates that could be specifi-
cally cleaved by these enzymes were incorporated into the
nanocarriers as the enzyme-specific sensors and actuators.

For nanocarriers that utilize extracellular enzymes for acti-
vation or release, MMP is the most popular target. Tsien
and co-workers (184) demonstrated an exemplary MMP-
activated cell-penetrating peptide for tumor selective deliv-
ery of imaging agents. This activated peptide is constructed
by fusing polyarginine (a positively peptide that mediates
robust cellular internalization) with a polyanionic domain

FIGURE 5. Harnessing physiological traits of tumor for precise drug delivery. The nanocarrier could reach
the tumor either by actively binding to tumor specific receptors or passively through the EPR effect. Physio-
logical signals in the extracellular space, such as pH gradient, enzyme, ROS, and hypoxic environment, could
be utilized to trigger the release of drugs targeting extracellular objectives or activate the nanocarrier for
further intracellular penetration. Intracellular environment, such as acidity, enzymes, ROS, reducing potential,
ATP gradient, could be used to trigger intracellular nanoparticle transport or drug release.
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to neutralize the positive charges via a MMP2/9 cleavable
linker. With the use of a peptide-dye conjugate, it was dem-
onstrated that the polyanionic moiety inhibited the electro-
static interactions between the polyarginine moiety and cell
membrane, reducing cellular uptake during circulation un-
til it was cleaved off by the MMP-2/9. In vivo studies
showed that the MMP activatable peptide could enhance
tumor-specific accumulation of the imaging agent by ap-
proximately threefold. Jiang and co-workers (167) further
extended this MMP-activated peptide to modify antican-
cer-drug delivery nanocarriers. In this system, dendrigraft
poly-L-lysine nanocarrier was modified with the peptide,
and the larger volume of nanocarriers enabled the co-deliv-
ery of two types of anticancer drugs simultaneously: a plas-
mid encoding siRNA [targeting vascular endothelial
growth factor (VEGF)] for inhibiting angiogenesis and
small molecule drug DOX for cancer cell killing. MMP
activated internalization of the nanoparticle enhanced the
specificity of tumor-targeted delivery of the gene and che-
motherapies when compared with nanocarriers coated with
nonresponsive peptides. This led to significant reduction in
blood vessel formation and increased cancer cell apoptosis
using a xenograft glioma model in mice. Torchilin and co-
workers (508) devised a MMP-2 triggered PEG-sheddable
micelle for delivering the hydrophobic drug paclitaxel
(PTX). The hydrophobic PTX, hydrophilic PEG was linked
through a MMP-2-cleavable peptide to prepare the amphi-
philic building block of the micelle (PEG2000-peptide-
PTX). A TAT peptide was conjugated to a shorter PEG
chain and another hydrophobic moiety phosphoethano-
lamine to form another cell penetrating building block
(TAT-PEG1000-PE), which could be buried under the
PEG2000-peptide-PTX during circulation. Cleavage of the
peptide in tumor microenvironment shed the PEG2000
shell and exposed the buried TAT peptide for enhanced
cellular uptake. In addition to controlled cellular internal-
ization, Meiners and co-workers (432) also demonstrated
the application of MMP degradable peptide for controlled
drug release from nanocarriers using MSN as a model.

In addition to MMP, other tumor-associated enzymes were
also explored for controlled anticancer drug delivery. Furin
is an important convertase that processes substrate proteins
for secretion; it is distributed both on the cell membrane
and in the intracellular compartment (mainly Golgi net-
work) (377, 412). Jiang et al. (185) incorporated the pep-
tide substrate of furin into a graphene-based nanocarrier,
where the drug release and nanoparticle internalization are
controlled by the overexpressed furin on cancer cell mem-
brane (185). In this system, the model cytokine TRAIL was
conjugated to a furin-sensitive peptide, which was further
conjugated to the graphene oxide sheet via a PEG linker,
and the DOX was loaded into the graphene oxide sheet
through �-� stacking. When the nanoparticle arrives at the
tumor microenvironment through the EPR effect, cell mem-
brane-associated furin will cleave the peptide linker, releas-

ing TRAIL into extracellular space. Then the remaining
part of the nanocarrier will be internalized into the endo-
somal compartment for DOX delivery. It was demonstrated
that the furin cleavable nanocarrier showed significantly
higher anticancer efficacy than nondegradable counter-
parts. Jiang et al. (183) also demonstrated a strategy utiliz-
ing the overexpressed hyaluronidase in extracellular envi-
ronment for the sequential delivery. In this system, a core-
shell structured nanocarrier with a liposome as DOX
loading core and hyaluronic acid (HA) gel as TRAIL load-
ing shell was prepared. Hyaluronidase degradation of the
HA shell released TRAIL in extracellular environment, and
it also exposed the cell-penetrating peptide on the liposome
surface for facilitated internalization. In addition to long-
established enzymes, new enzymes correlated to tumor pro-
gression are also under investigation. For example, legu-
main is a protease overexpressed by tumor associated mac-
rophages (TAM), and it can be trafficked from cytosol to
membrane under hypoxia or starvation (76). To utilize this
signal, Xiang and co-workers (238) conjugated the tripep-
tide substrate of legumain (AAN) onto the side chain of the
TAT peptide and then appended drug-containing liposomes
onto the altered version of TAT peptide (238). The AAN
modification reduced TAT-mediated cellular internaliza-
tion by 72.65%, which could be reversibly recovered by
legumain cleavage.

Intracellularly overexpressed enzymes are also attractive
triggers for controlling intracellular behaviors of the nano-
carriers. Biswas et al. (31) utilized furin in the intracellular
compartment for releasing protein therapeutics from the
polymeric nanogel. In this acrylamide-based nanogel, posi-
tively charged monomer was incorporated for enhanced
cellular uptake, and the peptide sensitive to furin was incor-
porated into the crosslinkers to make this protein-encapsu-
lated nanogel degradable in the presence of furin. Katayama
and co-workers utilized intracellular protein kinase to trig-
ger the release of DNA plasmid from DNA/polycationic
peptide complexes (192). Cationic polypeptide that could
be specifically phosphorylated by protein kinase C-� was
screened from a large library and polymerized with acryl-
amide radically. The polycationic polymer complexed with
negatively charged DNA and transported it inside cells,
where phosphorylation by the protein kinase will convert
the charge of the peptides to negative, releasing the DNA
cargo intracellularly. The specific activity of tumor-associ-
ated protein kinase C-� made this system a tumor-selective
DNA delivery carrier. McCarley and co-workers (308)
demonstrated a quinone-modified liposome and utilized
quinone reductase as a stimulus for drug release. Trimethyl
quinone modified to the NH2 termimus of the constituent
lipid was cleavable upon the reductase activation, releasing
the liposomal content. In addition, Amorós and co-workers
demonstrated the application of various types of intracellu-
lar enzymes, such as caspase-3 (83), �-D-galactosidase (26),
and cathepsin B (84) to control the capping of mesoporous
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nanoparticles, realizing enzyme controlled intracellular
drug release.

3. Reducing gradient

The reducing gradient between the intracellular compart-
ment and the extracellular environment is a robust physio-
logical stimulus that attracted great interest for controlled
drug delivery. Intracellular concentrations of the glutathi-
one tripeptide (GSH) is �2–10 mM, which is maintained in
reducing the state by other reducing factors [such as nicotin-
amide adenine dinucleotide phosphate hydrogen (NADPH),
nicotinamide adenine dinucleotide (NADH), or thioredox-
inred] (225). In sharp contrast, extracellular GSH level is
only 2–20 �M (372). Furthermore, the GSH level is at least
fourfold higher in tumor when compared with normal tis-
sues (102, 209), making the reduction gradient-based nano-
carriers more tumor selective.

Nanocarriers are often incorporated with GSH-sensitive
bond, typically the disulfide bond, for intracellular activa-
tion or degradation. The disulfide bond is stable in the
mildly oxidative extracellular space, but after crossing the
plasma membrane it will be converted into thiol or undergo
thiol-disulfide exchange by interaction with reducing
agents. Luo et al. (249) demonstrated the application of
disulfide bond to control an �-cyclodextrin and folic acid
based capping of MSN nanocarriers. Tang and co-workers
(448) used the disulfide bond to link low-generation poly-
amidoamine (PAMAM) dendrimers with branched PEG
shells for enhanced gene and chemotherapeutic delivery.
Intracellular degradation of the disulfide bond exposed the
siRNA and DOX coloaded PAMAM dendrimer for passive
drug release. DeSimone and co-workers (94) devised a
siRNA pro-drug by covalently conjugating siRNA onto a
hydrogel nanocarrier via a disulfide linker. The nanocarrier
was prepared by the particle replication in nonwetting tem-
plates (PRINT) method to enable either entrapment or con-
jugation of the siRNA. The covalent conjugation reduced
the risk of burst release compared with the gel entrapment-
based loading method. The disulfide linker allowed selec-
tive release of siRNA inside targeted cells, while the control
conjugate with a noncleavable linker failed to release the
drug. Using a disulfide containing crosslinker, Zhao and
co-workers prepared a GSH-degradable nanogel for intra-
cellular delivery of various types of anticancer proteins,
such as caspase-3 (501), apoptin (502), or p53 (503). Cel-
lular entry could be mediated either by a positively charged
monomeric component (501, 502) or by a cancer-specific
targeting ligand to target the overexpressed luteinizing hor-
mone releasing hormone (LHRH) receptors (503). After
internalization, then the polymeric shell will shed off intra-
cellularly to release the encapsulated payload for inducing
apoptosis.

In addition to the classic disulfide bond, other redox-re-
sponsive mechanisms were also explored. Selenium is an

element that belongs to the same family as sulfur; the higher
electron number in selenium makes it a better electron do-
nor than acceptor. He et al. (150) applied the diselenide
bond, which is more difficult to be reduced than thiol bond,
for constructing a reducing gradient-dependent stepwise
unpacking system. In the nanosystem, low-molecular-
weight PEI was polymerized through diselenide bond and
complexed the DNA cargo through electrostatic interac-
tion. Upon this complex, another layer of disulfide bond
modified HA was adsorbed. It was demonstrated that 5 �M
GSH was sufficient to degrade the disulfide bond-based
shell (mimicking reducing potential the nanoparticle en-
countered just after cellular uptake), while 5 mM was
needed to disassociate the diselenide bond-based core
(mimicking the reducing potential of the cytosol). In an-
other study, the charge and hydrophilicity change of ferro-
cenium cation upon GSH reduction was incorporated into
an amphiphilic building block for preparing redox-respon-
sive nanoassembly (47). The hydrophobic pillararene-based
building block was sandwiched by two ferrocenium cat-
ions, making the conjugate amphiphilic. The cationic am-
phiphile allowed efficient loading of siRNA through elec-
trostatic interaction during the sonication-mediated assem-
bly process, and it also contributed to efficient cellular
uptake. After cellular internalization, reduction of ferroce-
nium to ferrocene in the cytoplasm shifted the polarity of
the building block from amphiphilic to hydrophobic, dista-
bilizing the assembly and releasing the siRNA. When co-
delivering siRNA and DOX, it was demonstrated that the
nanosystem could efficiently inhibit drug resistance and in-
crease the cytotoxicity of chemotherapeutics.

4. ROS

Intracellular metabolism of oxygen generates ROS, such as
singlet oxygen (1O2), anion radical (O2

�.), hydroxyl radical
(.OH), and hydrogen peroxide (H2O2) (511). Aggressive
metabolism and damaged ROS scavengers (such as antiox-
idant enzymes) lead to detrimental accumulation of ROS
inside cancer cells (451). The level of ROS in tumor cells
could reach 10- to 100-fold that of normal cells, which in
return further contributes to DNA damage or mutation,
exacerbating tumor malignancy (29). ROS accumulation is
a common feature shared by various types of diseases, such
as inflammation (109), neurodegenerative disease (22), di-
abetes (119, 157), and cardiovascular disease (41). To har-
ness the ROS as a physiological cue for controlled drug
delivery, nanocarriers were prepared by incorporating la-
bile bonds that could be cleaved [such as thiolketal (462,
493), aryl boronic acid (237, 449), or proline (489)] or
undergoing polarity change [such as thiolester (117), or
propylene sulfide(7), ferrocene(391)] upon oxidation.

Murthy and co-workers (462) utilized the thioketal based
polymer poly-(1,4-phenyleneacetone dimethylene thio-
ketal) for oral delivery of the siRNA (462). The polymer is
resistant to acid, alkaline, or proteolytic degradation but
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sensitive to ROS-triggered cleavage, enabling site-specific
delivery of nanoparticles to ROS-generating inflamed or
cancerous intestines. Xu and co-workers (449) demon-
strated a ROS-triggered protein deprotection method for
spatial-temporal control of protein activities after delivery.
The key lysine residue of the model anticancer protein
RNase A was caged by a 4-nitrophenyl-4-(4,4,5,5-tetram-
ethyl-1,3,2-dioxaborolan-2-yl)benzyl carbonate through a
ROS labile boronic acid linker. In this proof-of-principle
study, cationic lipid was used for intracellular delivery of
the modified RNase A for protein-modification based ther-
apy (207). It was shown that only the aryl boronic acid
linked cage could be cleaved off after exposure to H2O2

while a nondegradable control failed to reactivate the
RNase A. The ROS labile boronic acid linker has also
been incorporated into an activatable CPP for in vivo
agent delivery (454). Similar to the MMP activatible CPP
(184), the positively charged CCP (Arg9) was caged by an
anionic moiety (Glu9) through the ROS-sensitive 4-bo-
ronic mandelic acid linker. Exposure to H2O2 led to frag-
mentation of the peptide, activating intracellular pene-
tration.

Using a ROS-mediated polymer polarity change strategy,
Leroux and co-workers (117) coated an ROS-sensitive
polymeric shell for controlling the aggregation of nano-
crystal. Tuning the affinity between the thioester based
amphiphilic polymer and the hydrophobic PTX nano-
crystals generated stable core-shell nanocarriers in non-
oxidative condition. ROS converts the hydrophobic thio-
lesters to hydrophilic sulfoxide or sulfone, destabilizing
the shell for PTX release. Staff et al. (391) utilized the
polarity change of ferrocenium/ferrocene upon oxidation
for controlling drug release. Polymer containing the fer-
rocenium was formulated into a nanocapsule that held a
drug-loaded liquid core. Oxidation of the polymer
changed local polarity of the nanocapsule, releasing the
loaded drug.

5. Hypoxic condition

Hypoxia is a hallmark of primary tumors (211), where the
disorganized tumor vasculature caused limited oxygen dif-
fusion to regions far away from the capillaries (�200 �m)
(463). This hypoxic environment posed a survival pressure
to select phenotypic or genetic mutations that favor hyp-
oxia, generating more chemo-resistant, death-resistant, in-
vasive, and metastatic cancer cell variants. The major role
of hypoxia in tumor progression and drug resistance made
hypoxia an attractive target for cancer therapy. Huge
amounts of efforts have been devoted to target the hypoxic
area, such as developing hypoxia-activated chemotherapeu-
tics (397), engineering anaerobic bacteria to express tumor
suppressing protein (486). Due to the severe hypoxia in
tumor but not normal tissues, there is an emerging trend for
harnessing hypoxia for designing tumor-targeted nanocar-
riers for theranostics (92, 504).

To utilize the hypoxia as a cue, hypoxia labile bonds were
generally incorporated into polymeric nanoparticles.
Torchilin and co-workers (333) used azobenzene as a hyp-
oxia cleavable linker to prepare a PEG sheddable nanocar-
rier for hypoxia-targeted delivery of siRNA. Building block
consisted of PEG, azobenzene, and PEI, and the lipid DOPE
was prepared to form micelles, where the siRNA payload
was complexed into the nanocarrier through electrostatic
interaction. When the siRNA-loaded micelle diffuses to the
hypoxic tumor region, the PEG shell will be cleaved off and
expose the cationic PEI layer for cancer cell uptake. Thambi
et al. (411) incorporated the hypoxia-sensitive group 2-ni-
troimidazoles (NI) into the side chain of the hydrophilic
polymer carboxymethyl dextran. Due to the hydrophobic-
ity of NI, the amphiphilic polymer could self-assemble into
nanocarriers and load a hydrophobic drug inside. When the
nanocarrier was exposed to hypoxic environment, the NI
group got reduced to a hydrophilic derivative, destabilizing
the self-assembly for drug release. It was demonstrated that
the hypoxia-responsive nanoparticle showed hypoxic can-
cer cell/tumor selectivity both in vitro and in vivo. In spite of
the progresses made in harnessing hypoxia for triggering
nanocarrier activation or drug release, diffusing the nano-
carriers to tumor regions distant from the blood vessels
could be very challenging.

6. ATP gradient

The aggressive proliferation of tumors leads to the up-
regulation of various types of metabolites. As the “mo-
lecular unit of currency,” ATP plays a central role in
metabolic energy transfer. There is a sharp ATP concen-
tration difference between extracellular (�5 �M) and
intracellular environments (1–10 mM). Increased intra-
cellular ATP has been observed for cancerous tissues
(507). Thus ATP has emerged as a new physiological
trigger investigated for controlled intracellular drug de-
livery.

To construct ATP-responsive nanosystem, the ATP binding
aptamer (a short single-stranded DNA) is the most widely
used ATP-sensitive moiety (398). Mo et al. (282) applied
the ATP aptamer as the ATP sensor as well as drug release
actuator for DOX delivery. In this formulation, the ATP
aptamer with its complementary strand was hybridized into
a DNA duplex, which provides a “GC” pair for loading the
DOX. The DOX-loaded DNA duplex was condensed with
a positively charge peptide protamine and then coated
with a polymer shell composed of HA. Systemic admin-
istration of the nanoparticle led to targeted accumulation
in the tumor tissue, where the HA shell got degraded by
the HAase-rich tumor environment and shuttled the
DOX-loaded DNA duplex intracellularly. When exposed
to the high ATP level of the intracellular compartment,
ATP competitively bound with the ATP aptamer and
dissociated the DNA duplex for DOX release. Compared
with a nonresponsive DNA core, the ATP aptamer-based
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nanocarrier showed significantly enhanced tumor growth
inhibition. The relatively short length of the ATP ap-
tamer made it easy to be adapted to different types of
nanosystems (149, 229, 284).

In addition to the classic ATP aptamer, other ATP binding
molecules were also explored for constructing ATP-respon-
sive DDSs. Lee and co-workers (212) utilized the strong
affinity between ATP and Zn2�-dipicolylamine to prepare
an ATP-responsive theranostic system. In this three-layered
nanocarrier, an upconversion nanoparticle core was coated
with MSN, where the pores of MSN could be used to load
the anticancer drugs (DOX or CPT) capable of absorbing
fluorescence emission from the core. The MSN was further
modified with Zn2�-dipicolylamine, upon which a layer of
polypeptide-containing aspartate was coated for capping
the pore. Exposing the nanocarrier to intracellular level of
ATP will dissociate the polypeptide coating due to the com-
petitive binding between ATP and Zn2�-dipicolylamine, re-
leasing the loaded drug and recovering the fluorescence of
the upconversion nanocarrier core. Inspired by the applica-
tion of phenylboronic acid in RNA choromatography,
Naito et al. (300) exploited the reversible interaction be-
tween phenylboronic acid and the ribose ring present in
nucleic acids for ATP-responsive siRNA delivery. In this
PEG-polylysine-based polyion complex, phenylboronic
acid was conjugated to the cationic polylysine segment.
SiRNA was loaded into the nanocomplex through both
polylysine-mediated electrostatic interaction and phenylbo-
ronic acid generated reversible covalent bonds. ATP sensi-
tivity could be controlled by tuning the ratio between phe-
nylboronic acid and siRNA.

In spite of the efforts devoted to designing ATP-responsive
nanosystems, these strategies all face the common challenge
of ATP resolution. The ATP aptamer is adenosine specific,
making ATP and ADP equivalent triggers. ATP binding
polymers are based on phosphate (Zn2�-dipicolylamine) or
ribose (phenylboronic acid) competition, making any phos-
phate or ribose containing molecules viable alternatives to
ATP. Currently, the chemical moiety with the highest ATP
fidelity involves the use of proteins that utilize ATP as sub-
strate. Aida and co-workers (32) harnessed the specific
ATP-consuming capability of a protein chaperon GroEL for
designing ATP-responsive DDSs. Naturally, GroEL grabs
incorrectly folded proteins into its cavity for refolding and
then releases it through conformational changes powered
by ATP hydrolysis. In the engineered version of GroEL,
GroEL monomer was polymerized into a tube through a
Mg2� coordination-based mechanism. Payload could be
conjugated to a guest “wrongly folded” protein for loading
into the cavity of GroEL. Further modification of the pro-
tein assembly with boronic acid derivative made the nano-
system permeable to the cell membrane, where intracellular
ATP triggered conformational change of the monomers for
nanotube disassembly and drug release.

B. Programmed Multi-Stimuli-Responsive
Delivery Systems

To further enhance treatment precision and efficacy, two or
multiple physiological trigger-relevant designs can be inte-
grated into the formulations to achieve programmed per-
formance. Nanocarrier activation or drug release could be
controlled by physiological triggers in boolean logic ways.
The triggers could either work synergistically (where any
one of the cues could activate drug activation/release alone,
but combined cues will lead to more effective drug release)
or sequentially (where the multiple trigger function in tan-
dem and all the triggers are essential) (312).

1. Synergistic stimuli-responsive systems

Synergistic stimuli-responsive nanocarriers have been ex-
tensively explored to incorporate a combination of distinct
physiological triggers (such as pH/redox, redox/enzyme,
pH/ROS, oxidation/redox) for controlled drug delivery.
The “either trigger A or trigger B” logic could help achieve
a more specific drug targeting (where the target region is
characterized by both A and B) or overcoming the hetero-
geneity of tumors (where A and B are distributed in differ-
ent regions of the same tumor).

The synergistic effect of pH and redox on drug release has
been broadly studied for facilitated drug release. Lu et al.
(246) incorporated the pH-sensitive ketal group and the
GSH cleavable disulfide bond into a PEG and polyserine
based graft co-polymer. The polymer with a disulfide-
linked PEG backbone (hydrophilic) and ketal-modified
polyserine pendents (hydrophobic) self-assemble into core-
shell nanoparticle that encapsulated the hydrophobic drug
DOX in the core. It was demonstrated that the dual-respon-
sive nanocarrier could be disrupted after exposure to GSH
(10 mM) and acid condition (pH 5.0) either separately or in
combination. The delivered DOX could be observed in the
nuclei of targeted cells after incubation for 4 h, inducing
high levels of apoptosis. Dhar and co-workers (326) dem-
onstrated a redox/esterase dual-responsive nanocarrier for
simultaneous delivery of two drugs. Aspirin and cisplatin
were co-delivered in the same nanocarrier for their anti-
inflammatory and anticancer effects, an efficient combina-
tion therapy against prostate cancer resistant to castration.
In this nano-formulation, aspirin and cisplatin were conju-
gated to second-generation dendrons through aromatic es-
ter and aliphatic ester bonds, respectively. Then the den-
drons were linked to a PLA backbone for incorporation
into a PLGA-PEG-based self-assembly. Facilitated release
of aspirin was observed in the presence of esterase while
cisplatin was released much faster by sodium ascorbate-
mediated reduction. The co-delivery system enabled strin-
gent control of drug dosages and exhibited improved anti-
cancer efficacy in cisplatin-resistant cancer cell lines. Anal-
ysis of the empty carrier showed high biocompatibility with
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low cytotoxicity or immunogenicity using a model RAW
264.7 cell line. Pu et al. (347) demonstrated a ROS/pH-
responsive nanosystem for targeted delivery of a model
anti-inflammatory drug curcumin. This nanocarrier is
mainly composed of N-palmitoyl and Cy3 modified chi-
tosan and a thioketal-based polymer. Protonation of amine
groups in chitosan would affect their charge-mediated re-
pulsion and cause conformational change. ROS would shift
the polarity of the polymer from hydrophobic to hydro-
philic, destabilizing its association with the nanocarrier.
The hydrophobic curcumin assembled into the hydropho-
bic core of the nanoassembly. The nanocarrier exhibited
high stability in physiological pH and efficiently accumu-
lated at inflamed tissue. Rapid cellular internalization was
observed within 15 min after reaching the targeted tissue.
ROS scavenging effects occurred either extracellularly or
intracellularly to exert therapeutic effects.

In addition to responding to two orthogonal stimuli, Wang
et al. (447) demonstrated a nanocapsule that could be de-
graded by two opposite stimuli: GSH and ROS. In this
system, the labile phenol ester of the model anticancer drug
SN38 was found sensitive to hydrophilic neighboring group
mediated electron withdrawing as well as GSH-mediated
thiolysis; both of these conditions could trigger the degra-
dation of the phenol ester bond and release the drug. The
hydrophilicity-based electron withdrawing was further
controlled by a hydrophobic thioester that could be oxi-
dized by ROS to become hydrophilic. The amphiphilic
building block constitutes of the hydrophilic PEG and the
hydrophobic SN38 self-assembled into a nanocapsule. Ex-
posure to either ROS or GSH could cleave off SN38 and
disrupt the nanoassembly. The GSH/ROS dual responsive
system holds the promise to overcome the heterogeneous
oxidative states at different regions or stages of a tumor.

2. Sequential stimuli-responsive systems

Sequentially triggered DDSs were typically designed for en-
hancing subcellular specificity. The “trigger A then trigger
B” strategy encodes the stimuli-responsive components in
different layers of a nanosystem and then exhibits a step-
wise activation along the pathway to destination. Trigger A
is often an endogenous physiological stimulus, but trigger B
could be either from the physiological environment or from
predesigned components in the nanocarriers.

Zhang et al. (497) devised an enveloped MSN to harness
extracellular MMP and intracellular GSH in tandem for
programmed nanoparticle internalization and drug release.
A disulfide bond was used to anchor MSN surfaces with
�-CD, upon which adamantane linked with a multifunc-
tional peptide was docked. The peptide is composed of a
RGD targeting ligand, MMP-sensitive region, and anionic
poly(aspartic acid). DOX was loaded into MSN pores as a
model drug. After systemic administration, the anionic
poly(aspartic acid) augments the circulation efficacy of the

nanoparticle by avoiding unspecific uptake. MMP in extra-
cellular environment then cleaves the poly(aspartic acid)
shell and exposes the RGD peptide for inducing cancer cell
specific uptake. The �-CD will be removed by intracellular
GSH to liberate the loaded DOX. Choi et al. (58) devised a
pH/HAase co-responsive carrier for stepwise degradation
of a core-shell structured nanocarrier for siRNA and DOX
delivery. For the core, HA modified with the hydrophobic
5�-cholanic acid self-assembled into nanoparticles, entrap-
ping the DOX inside. To load the anionic siRNA onto the
anionic HA nanoparticle, Zn2�-dipicolylamine based RNA
receptor was conjugated to the HA core for binding siRNA
through ZN(II)-phosphate interaction. To reduce the per-
turbance of siRNA loading by physiological phosphates, a
layer of calcium phosphate-based shell was further coated.
After systemic administration, the calcium phosphate shell
would be dissolved by extra-tumoral pH and partially ex-
pose the HA core for CD-44-mediated targeting and inter-
nalization. Further removal of the calcium phosphate shell
occurred in the endosome-lysosome, releasing the siRNA
together with phosphate and calcium ion for proton-
sponge-mediated endosome escape. The encapsulated DOX
would then be released after HAase degradation of the HA
core.

In contrast to using sequential endogenous triggers, incor-
porating autonomous responsive components into the
nanocarrier enables the design of more sophisticated sys-
tems for executing predesigned sequential reactions. The
artificially created/potentiated second trigger could comple-
ment the absence or low intensity of the second signal for
more robust nanocarrier activation or drug release.

Mo et al. (283) demonstrated a pH/ATP sequential respon-
sive system for DOX delivery, where endogenous endolyso-
somal pH was the first trigger. The second ATP trigger and
ATP-responsive moieties were all incorporated in the nano-
system that was programmed to take effect after pH activa-
tion. This two liposome-based ATP delivery and ATP-re-
sponsive release system was designed for supplementing
external ATP to trigger drug release intracellularly. In one
liposome modified with pH-responsive fusogenic peptide,
the DOX-loaded ATP aptamer duplex was encapsulated,
while another unmodified liposome was designed for deliv-
ering ATP. After co-administering the two liposomes, they
accumulated at the tumor by the EPR effect. Internalization
of the liposome in acidic endolysosome activates the fuso-
genic peptide for lipsome and endosome membrane fusion,
exposing the ATP aptamer to ATP for triggering DOX re-
lease. In the study by Sun et al. (400), a pH/DNase-based
sequential stimuli-responsive system was demonstrated.
The endogenous pH was used to activate the second trigger
DNase for nanocarrier degradation and intracellular drug
release. In this strategy, a DNA-based nanocarrier was pre-
pared by rolling circle amplification for loading DOX
through DNA intercalation. The DNase trigger was locked
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by an acid-degradable nanocapsule. The positively charged
nanocapsule was adsorped onto the DNA nanoparticle
through electrostatic interaction to form stable nanoassem-
blies. Internalization of the nanoassembly by cancer cells
led to acid triggered shedding the polymeric capsule, lead-
ing to DNase activation in the endosome. The liberated
DNase then chop up the DNA carrier and release the loaded
DOX.

Hu et al. (164) demonstrated a biomimetic core-shell nano-
particulate system, in which an acid-degradable polymeric
nanocarrier was used as the core for loading the small mol-
ecule drug DOX and a membrane derived from platelets for
anchoring an anticancer protein TRAIL (164). The “self
marker” rich membrane could reduce immunogenicity and
prolong circulation time of the nanocarriers. The P-selectin
on the coated platelet membrane could also enhance the
cancer targeting efficacies by binding to the overexpressed
CD44 on solid tumors or circulating tumor cells, augment-
ing the interaction between the loaded TRAIL and tumor
cells. Surface interaction between the core-shell nanocarrier
and cancer cells facilitated internalization of the nanocar-
rier, transporting the nanocarrier to the endosome. The
polymeric core will undergo gradual degradation in the
acidic endosome due to the incorporation of an acid-labile
cross-linker, glycerol dimethacrylate, in the polymeric net-
work. The degradation expedited the release of DOX into
the endosomal compartment, which further diffused into
the nucleus to exert a synergistic anticancer effect with the
membrane targeted TRAIL protein. In another study, a
HAase/transglutaminase/pH triple stimuli-responsive sys-
tem was conceived for co-delivering the TRAIL protein and
an antiangiogenic peptide (cilengitide) into the extracellular
environment of tumors (163). Endogenous HAase and pH
triggers and an exogenous transglutaminase (96) cue pro-
vided by the carrier were harnessed to construct a drug
containing depot in vivo for sustained release. In this core-
shell nanocarrier, the transglutaminase was encapsulated
into nanogels composed of HA and the HA nanogel consti-
tutesd the outer layer of the formulation. The drugs TRAIL
and cilengitide were encapsulated into a polymeric gel-
based core, which was crosslinked by an acid-sensitive
crosslinker. The core particle was further modified with
human serum albumin (HSA) for enhanced stability. Mean-
while, the HSA also provides acryl and amine groups for
controlling the aggregation of core. Once administered sys-
temically, the nanoformulation will accumulate in tumor
microenvironment, where the rich HAase will liberate
transglutaminase from the HA nanogel. The transglutami-
nase then catalyzed the crosslinking of the HSA on the
surface of the core-nanocarrier, aggregating the nanocores
into micro-scaled particles. The micro-aggregation inhib-
ited size-dependent endocytosis of nanocarriers and re-
mained in the extracellular environment, where the mildly
acidic condition triggered gradual degradation of the
TRAIL/cilengitide containing particle for drug release.

In addition to pH or HAase initiated sequential reactions,
endogenous metabolites are also investigated for initiating
sequential autonomous responses. Yu et al. (487) designed
a multifunctional micelle containing enzymes to convert
glucose signal to regional hypoxia, which later triggered the
innate reduction of the hypoxia-sensitive moieties in the
nanocarrier for disassembly and drug release. Ye et al. (481)
harnessed the natural response of pancreatic cells to glucose
for controlled insulin secretion. Pingarroń and co-workers
(89) demonstrated a Janus nanoparticle that converts glu-
cose or ethyl butyrate into acidic signals through preimmo-
bilized enzymes. Then the acidity would automatically trig-
ger drug release from another part of the nanosystem, pH-
responsive MSN, for drug release (89).

V. CLINICAL IMPACT OF DRUG DELIVERY
SYSTEM

The confluence of emerging development of materials and
biomedical science provides tremendous translational op-
portunities of innovative DDSs. Whereas the number of
commercialized products is still small, compared with the
traditional medications. The total number of nanoformula-
tions that are clinically approved or under clinical trials is
on the order of �250 (104). From the perspective of the
nanoparticulate platform, nanomedicine under clinical in-
vestigation could be classified into liposomes, protein-
bound nanoparticles, antibody-drug conjugates (61), poly-
mer-drug conjugates (93), polymeric micelles, and inor-
ganic nanocarriers. Typical issues involving manufacturing
scale, homogeneity, and reproducibility need to be ad-
dressed for enhancing the success rate in translation (217).
Here, we summarized the clinical translation of nanomedi-
cine for anticancer therapies and highlight recent progresses
of stimuli-responsive nanoformulations (TABLE 2).

Doxil, DOX-loaded liposome, was the first approved nano-
medicine for cancer treatment in 1995. Dramatic increase in
DOX delivery efficiency was observed (4- to 16-fold) using
the liposome carrier rather than free DOX (118). Decades
of development generated dozens more liposome-based for-
mulations for delivering small molecule drugs (daunorubi-
cin, cytarabine, vincristine, etc.) or macromolecular thera-
peutics (vaccines, nucleic acids) (9, 176). Liposome has be-
come a canonical DDS with typical merits for a robust DDS:
1) stable loading and protection of either hydrophilic drugs
(in the aqueous core) or hydrophobic drugs (in the lipid
bilayer); 2) long circulation, especially after PEG modifica-
tion; and 3) efficient EPR effect and improved distribution.

Protein nanoparticle-based nanomedicine has been demon-
strated as a robust platform for drug delivery. Abraxane,
albumin bound (Nab) paclitaxel nanoparticle, was ap-
proved in 2005 for treating a variety of cancers, including
breast, pancreatic, lung, ovarian, gastrointestinal, and head
neck carcinomas (274, 362). Albumin is an abundant pro-

SUN ET AL.

210 Physiol Rev • VOL 97 • JANUARY 2017 • www.prv.org
Downloaded from journals.physiology.org/journal/physrev (059.148.143.047) on January 14, 2021.



Table 2. Representative clinical translations of nanomedicine delivering anticancer therapeutics

Name Formulation Drug Status* Indications

Doxil Liposome Doxorubicin First approved in 1995 Ovarian cancer, AIDS-
related Kaposi’s
sarcoma, multiple
myeloma

Marqibo Liposome Vincristine Approved in 2012 Acute lymphoblastic
leukemia

Onivyde Liposome Irinotecan Approved in 2015 Metastatic adenocarcinoma
Promitil Liposome Mitomycin-C Phase I (NCT01705002) Metastatic colorectal

cancer (mCRC)
IHL-305 Liposome Irinotecan Phase I (NCT02631733) Solid tumors
DCR-MYC Liposome siRNA Phase I (NCT02110563) Multiple myeloma, Non-

Hodgkins lymphoma,
pancreatic
neuroendocrine tumors

Anti-EGFR
immunoliposomes

Liposome Anti-EGFR � doxorubicin Phase I (NCT01702129) Solid tumors

TKM 080301 Liposome siRNA Phase II (NCT01262235) Neuroendocrine tumors,
adrenocortical carcinoma

MM-302 Liposome Doxorubicin Phase II/III (NCT02213744) Breast cancer
Thermodox Liposome Doxorubicin Phase III (NCT00617981) Hepatocellular carcinoma
CPX-351 Liposome Daunorubicin � cytarabine Phase III (NCT01696084) High-risk acute myeloid

leukemia
MM-398 Liposome Irinotecan Phase III (NCT01494506) Metastatic pancreatic

cancer
Abraxane Protein-bound

nanoparticle
Paclitaxel First approved in 2005 Metastatic breast cancer,

locally advanced or
metastatic non-small cell
lung cancer, metastatic
adenocarcinoma of the
pancreas

Ontak Fusion protein Diphtheria toxin Approved in 1999 Cutaneous T-cell lymphoma
Kadcyla Antibody-drug conjugate Emtansine Approved in 2013 HER2-positive, metastatic

breast cancer
Brentuximab vedotin� Antibody-drug conjugate Monomethyl auristan E Approved in 2011 Hodgkin lymphoma and

systemic anaplastic large
cell lymphoma

Albumin-bound rapamycin Protein-bound
nanoparticle

Rapamycin Phase II (NCT02646319) Advanced cancer with
mTOR mutations

CRLX-101 Polymeric conjugated Camptothecin Phase I/II (NCT02769962) Small cell lung carcinoma,
non-small-cell lung

Eligard Polymeric nanoparticle Leuprolide Approved in 2002 Prostate cancer
Oncospar Polymeric conjugate Asparaginase Approved in 1994 Acute lymphoblastic

leukemia
NC-4016 Polymeric micelle DACH-platin Phase I (NCT01999491) Advanced cancers,

lymphoma
NC-6004 Polymeric micelle Cisplatin Phase I/II (NCT00910741) Locally advanced and

metastatic pancreatic
cancer

NK-012 Polymeric micelle SN-38 (irinotecan
metabolite)

Phase II (NCT00951054) Triple negative breast
cancer

PK1� Polymer-drug conjugate Doxorubicin Phase II (NCT00003165) Breast cancer
Genexol-PM Polymeric micelle Paclitaxel Phase III (NCT00876486) Breast cancer
Paclical Polymeric micelle Paclitaxel Phase III (NCT00989131) Epithelial ovarian cancer,

primary peritoneal
cancer, fallopian tube
cancer

Xyotax� Polymeric conjugate Paclitaxel Phase III (NCT00108745) Ovarian carcinoma,
peritoneal cancer

CYT-6091 Gold nanoparticle TNF-� Phase I (NCT00356980) Adult solid tumor

*ClinicalTrials.gov identifier is given for ongoing trials. �Drug release that could be triggered by physiological
signals.
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tein with a hydrodynamic size of 3.5 nm; it tends to bind
hydrophobic agents reversibly within plasma. The protein
nanoparticle was used to replace the toxic solvent Cremo-
phor and solve the issue of low solubility of paclitaxel. The
130 nm Abraxane nanoparticles dissociate into smaller pa-
clitaxel-albumin complexes (8 nm) upon administration
and enter the cells through an albumin-mediated internal-
ization. Success of Abraxane also inspired clinical transla-
tion of other chemotherapeutics suffering from poor solu-
bility, such as rapamycin (62). In addition to protein-bound
nanoparticles, protein conjugates and fusion proteins were
also successfully translated (115, 295). Trastuzumab
emtansine, HER2 antibody conjugated with emtansine via
a stable linker, was approved in 2013 for treating breast
cancer (438). This nanoformulation significantly improved
the survival rate of HER2-positive breast cancer patients.
Ontak, a fusion protein of interleukin-2 and diphtheria
toxin, was approved in 1999 for targeting cutaneous T-cell
lymphoma (115).

Many polymeric based nanoformulations, including poly-
mer-drug conjugate (382) and micelles, are marketed or in
the pipeline for translation. Genexol-PM, a paclitaxel-
loaded polymeric micelle (199), has been commercialized in
many countries, such as South Korea, for treating breast or
lung cancer. It is currently under the 505(b)(2) regulatory
pathway for accelerated United States FDA approval with
Abraxane as a reference. The amphiphilic property of mi-
celles makes them suitable for delivering either hydrophilic
or hydrophobic therapeutics, generating various micelle-
based formulations under clinical investigation (78, 139,
158, 265, 340, 476).

Inorganic nanocarriers based on different metals have made
their way for clinical imaging (137, 269), cancer thermal
therapy (196, 256), or therapeutic delivery. CYT-6091, a
gold nanoparticle bound with both TNF-� and PEG, has
finished phase I clinical trials in patients with advanced
stage cancer (230). Improved safety profiles were observed
by the gold nanoparticle-based nanomedicine versus free
TNF-�.

Several successful translations of physiological stimuli-re-
sponsive nanomedicine have been demonstrated. Brentux-
imab vedotin, a CD30 antibody conjugated with mono-
methyl auristan E through a cathepsin degradable linker
(36), was approved in 2011 for treating refractory Hodgkin
lymphoma and systemic anaplastic large cell lymphoma.
The CD30 antibody reduced undesired internalization by
normal cells, and the degradable linker could facilitate drug
release inside the tumor microenvironment. The poly(L-glu-
tamic acid)-based nanoparticle with paclitaxel conjugated
to the side chain was demonstrated to enhance the solubility
of paclitaxel for in vivo administration (227, 389). Endo-
somal enzymes could trigger the degradation of the carrier
for drug release. Meanwhile, the degraded glutamate could

further enhance paclitaxel tolerance, enabling higher dos-
age. The poly(L-glutamic acid)-paclitaxel formulation with
the trade name Xyotax is currently undergoing phase III
clinical trials. Similarly, PK1, a polymer conjugated DOX
formulation releasing DOX in response to endosomal pH
or enzymes, is also undergoing clinical investigation (383,
427).

VI. SUMMARY AND OUTLOOK

In summary, nanocarriers have contributed to the promis-
ing future of “precision medicine” by improving the ADME
profiles of various drugs. Increased understanding of the
physiology-material interaction has engendered rational
guidelines for designing nanoformulations to overcome ex-
tracellular and intracellular barriers. Further “evolution”
of nanomedine has shown emerging “intelligence” to sense
the physiological environment and act accordingly. Al-
though the list of FDA-approved nanomedicine sheds light
on the encouraging future of nanomedicine, more efficient
and “smarter” nanoformulations are needed to meet the
demands of the market.

To facilitate clinical translation of novel formulations, ac-
tions from different perspectives must be taken.

1) Further understanding of the physiology behind diseases
is needed (30). Theoretically, diseases are caused by a com-
bination of perturbances to the complex molecular system
of patients. The same disease might be caused through dif-
ferent pathways in different patients, and the genetic varia-
tions among patients further complicate the outcome of a
therapy. In 2015, the federal government announced the
Precision Medicine Initiative for optimized therapies based
on the genetic and molecular analysis of a patient (15). In
this context, a more rational match between the patient and
the tested therapy holds the promise to improving transla-
tional rates. Moreover, individual patient-responsive med-
ications can be expected when taking into account system-
atic data analysis associated with the patient’s physiological
conditions.

2) Generation of more accurate animal models is needed.
Animal model-based studies are used to see drugs or formu-
lations with promising animal study data failed in human
tests (28, 431). Apart from the flaws in design of animal or
human study, larger error could be introduced due to the
incapability of animal models to accurately reflect the dis-
ease in humans (430). For example, the expressway for
tumor-targeted drug delivery, the EPR effect, is not as ro-
bust in human subjects as in preclinical animal models
(215). Overexpression of receptors could be transient, and
the fluctuating receptor density would significantly com-
promise targeted nanomedicine.

3) Engineering of smart but simple formulations is needed.
Structurally simplified formulations are more competitive
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than complicated ones from the perspective of quality con-
trol. The pursuit of multifunctional nanomedicine often re-
sults in the appendage of extrafunctional modules. One
more component in the nanoformulation not only raises the
total cost but also increases the challenge in characteriza-
tion, scalability, and reproducibility.

4) Interdisciplinary collaboration (291) is needed. The field
of nanomedicine is multidisciplinary in that it requires
knowledge and skills from different areas (such as life sci-
ence, material science, chemical engineering, mechanical
engineering). It is impossible for any researcher with a single
background to realize the process from conception to mar-
ket. A team composed of experts from different areas is
necessary for nanomedicine development. Collaboration
between academia and pharmaceutical companies is also an
important link for connecting frontier technologies with
commercialization channels.
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