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  Pref ace   

 New research on fi nding effective treatment for breast cancer patients has led to a 
wealth of new data on a number of different levels that allowed a new understanding 
of the disease. It further allowed development of new strategies to treat the hetero-
geneous disease with different and patient-specifi c approaches. A variety of differ-
ent efforts on genetic, cell, and molecular levels have been focused on understanding 
causes that lead to cellular abnormalities, cell migration, epithelial–mesenchymal 
transition points, and metastasis that have become possible with new research meth-
ods. The advent of molecular technologies has signifi cantly improved our under-
standing of the biological processes underlying breast cancer; targeted therapies are 
now available to inhibit specifi c signaling pathways that are aberrant in breast can-
cer cell populations, and we are now able to image signaling molecules with specifi c 
markers in live cells. Progress has also been made in designing nanoparticles that 
can be utilized for imaging and for targeted breast cancer treatment. The joint initia-
tives and efforts of advocate patients, breast cancer survivors, basic researchers, 
statisticians, epidemiologists, and clinicians with specifi c and combined expertise 
have allowed close communication for more effective and targeted treatment. 
Furthermore, reliable animal models are available for specifi c experimentation, and 
biopsies from hundreds of patients are now available through a number of different 
resources including the large Translational Breast Cancer Research Consortium 
(TBCRC) from fourteen research centers with extensive tissue-banking 
components. 

 This book highlights recent advances in our understanding of breast cancer, and 
it includes review articles of genetics, epigenetics, various aspects of cell and molec-
ular biology, and several other areas of breast cancer that are aimed at determining 
new intervention sides for treatments and cures of breast cancer. The chapters are 
written by internationally recognized experts in their specifi c fi elds of expertise 
and include reviews of key topics in the fi eld. Cutting-edge new information is 
balanced with background information that will be readily understandable for the 
newcomer, for breast cancer patients, and for the experienced breast cancer 
researcher alike. All articles will highlight new aspects of specifi c research topics and 
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impacts on designing new strategies or identify new targets for therapeutic intervention. 
The topics addressed are selected to be of interest to patients, scientists, students, 
and teachers and to all who are interested in expanding their knowledge related to 
breast cancer imaging, diagnostics, therapeutics, or basic biomedical research on 
breast cancer. 

 The book is intended for a large audience as a reference book on the subject and 
includes the following chapters: Histopathology and Grading of Breast Cancer; 
Multicentric/Multifocal Breast Cancer: Overview, Biology, and Therapy; The 
Immune System in Breast Cancer Initiation and Progression: Role of Epithelial to 
Mesenchymal Transition; Remodeling of the Extracellular Matrix: Implications for 
Cancer; Biology and Treatment of Basal-Like Breast Cancer; Re-excision After 
Lumpectomy for Breast Cancer; Novel Antiangiogenic Therapies Using Naturally 
Occurring and Synthetic Drugs to Combat Progestin-Dependent Breast Cancer; New 
Insights on Estrogen Receptor Actions in Hormone-Responsive Breast Cancer Cells 
by Interaction Proteomics; Reprogramming Breast Cancer Cells with Embryonic 
Microenvironments: Insights from Nodal Signaling; Metastatic Determinants: Breast 
Tumor Cells in Circulation; Breast Cancer Epigenetics: Biomarkers and Therapeutic 
Potential; The Impact of Centrosome Abnormalities on Breast Cancer Development 
and Progression with a Focus on Targeting Centrosomes for Breast Cancer Therapy; 
A New Perspective on Cyclin D1: Beyond Cell Cycle Regulation; Gene Signatures of 
Infl ammatory Breast Cancer: Epithelial Plasticity and a Cancer Stem Cell Phenotype; 
An Integrated Human Mammary Epithelial Cell Culture System for Studying 
Carcinogenesis and Aging; and New Breast Cancer Treatment Considerations: A Brief 
Review of the Use of Genetically Modifi ed (Attenuated) Bacteria as Therapy for 
Advanced and Metastatic Breast Cancer. 

 It has been a special privilege to edit this book on breast cancer, and I would like 
to sincerely thank all contributors for their outstanding chapters and for sharing 
their unique expertise with the breast cancer community. I hope that this book will 
stimulate further advances in breast cancer research leading to new treatment strate-
gies to effectively treat the disease in early as well as advanced stages.  

       Columbia ,  MO, USA         Heide     Schatten       

Preface
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    Abstract     Carcinoma of the breast is the most common non-skin malignancy in 
women. It is now understood that breast cancer is not a single disease but rather many 
different diseases, each with its own clinical, morphologic, and molecular characteris-
tics. Greater than 95 % of breast malignancies are adenocarcinomas, which are divided 
into in situ carcinomas and invasive carcinomas. Carcinoma in situ (CIS) refers to a 
neoplastic proliferation that is limited to ducts and lobules by the basement membrane. 
Invasive carcinoma (synonymous with “infi ltrating” carcinoma) has penetrated through 
the basement membrane into stroma. Here, the cells have the potential to invade into 
the vasculature and thereby reach regional lymph nodes and distant sites. 

 Ductal carcinoma in situ (DCIS) is characterized by a proliferation of abnormal 
cells confi ned within the mammary ductal system. 

 DCIS is commonly classifi ed according to architectural and cytologic features 
and cell necrosis as low and intermediate grade (papillary, cribriform, and solid) and 
high grade (comedo).   

 –    DCIS represents a precursor to invasive breast cancer.   

•    The invasive breast carcinomas consist of several histologic subtypes.

 –    Infi ltrating ductal carcinoma is the most common type of invasive breast can-
cer, accounting for 70–80 % of invasive cancers. (See Sect.  1.3 .).  

 –   Infi ltrating lobular carcinoma is the second most common invasive breast can-
cer, accounting for 5–10 % of invasive cancers. (See Sect.  1.4 .).  

 –   As compared with infi ltrating ductal carcinomas, infi ltrating lobular carcino-
mas tend to be multicentric and/or bilateral, more differentiated, and hormone 
receptor positive, arise in older women, metastasize later, and spread to 
unusual locations, such as meninges, peritoneum, or gastrointestinal tract.  

    Chapter 1   
 Histopathology and Grading of Breast Cancer 

             Magda     Esebua         

        M.   Esebua        (*) 
  Department of Pathology and Anatomical Sciences ,  University of Missouri , 
  Columbia ,  MO   65211 ,  USA   
 e-mail: esebuam@health.missouri.edu  
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 –   Other less common invasive breast carcinoma histologies include tubular, 
mucinous, and medullary carcinomas.     

•   The only uniformly accepted prognostic markers that provide critical informa-
tion necessary for treatment decisions are TNM stage, axillary lymph node sta-
tus, tumor size and grade, hormone receptor status, and HER2 receptor status.

 –    Guidelines for measurement and use of prognostic markers are available from 
a 2007 ASCO expert panel on tumor markers in breast cancer (Harris L et al. 
J Clin Oncol 25:5287;2007)   . We agree with these recommendations. ER, PR, 
and HER2 overexpression should be evaluated on every primary invasive 
breast cancer. Hormone receptor expression should be used to guide endo-
crine therapy decisions. HER2 expression should be used to select patients for 
whom HER2-directed therapy use is appropriate in the metastatic and adju-
vant setting. The available data are insuffi cient to recommend that HER2 
overexpression be used for determining prognosis in patients with early breast 
cancer. Furthermore, there is insuffi cient evidence to support the clinical use 
of serum HER2 extracellular domain (ECD) testing.  

 –   Multiparameter gene expression analysis (i.e., the Oncotype DX™ assay) 
should be used to predict the risk of recurrence in women with newly diag-
nosed, node-negative, ER+ breast cancer who will be receiving tamoxifen. A 
low recurrence score should be used to identify patients who are predicted to 
obtain the most therapeutic benefi t from tamoxifen and who may not require 
adjuvant chemotherapy. Patients with a high recurrence score appear to derive 
relatively more benefi t from chemotherapy (specifi cally the CMF regimen) 
than from tamoxifen.        

1.1         Introduction 

    Cancer of the breast is one of the most common neoplasms and the leading cause of 
carcinoma deaths in women. In 2012, 226,870 women are diagnosed with and 
39,510 women will die of breast cancer (SEER). Breast cancer is associated with 
western lifestyle with incidence rates being highest in countries with advanced eco-
nomic development. 

 Most breast malignancies arise from epithelial tissue and are categorized as car-
cinomas. Breast carcinomas are a diverse group of lesions that differ in microscopic 
appearance and biologic behavior, although these diverse disorders are often dis-
cussed as a single disease. 

 The in situ carcinomas of the breast are either ductal (also known as intraductal 
carcinoma) or lobular. This distinction is primarily based upon the growth pattern 
and cytologic features of the lesions, rather than their anatomic location within the 
mammary ductal-lobular system. 

 The invasive breast carcinomas consist of several histologic subtypes; the esti-
mated percentages are taken from a contemporary population-based series of 
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135,157 women with breast cancer reported to the Surveillance Epidemiology and 
End Results (SEER) database of the National Cancer Institute between 1992 and 
2001 [ 1 ]. 

 Other subtypes, including metaplastic breast cancer and invasive micropapillary 
breast cancer, all account for fewer than 5 % of cases [ 2 ]. 

 This section will review the histology of ductal carcinoma in situ and invasive 
breast carcinoma.  

1.2      Ductal Carcinoma In Situ 

 The term ductal carcinoma in situ (DCIS) encompasses a heterogeneous group of 
lesions that differ in their clinical presentation, histologic appearance, and biologic 
potential. DCIS is characterized by proliferation of presumably malignant epithelial 
cells within the mammary ductal system, with no evidence of invasion into the sur-
rounding stroma as determined by routine light microscopic examination [ 3 ]. Ductal 
carcinoma in situ differs from lobular carcinoma in situ with regard to radiologic 
features, morphology, biologic behavior, and anatomic distribution in the breast. 

 Classifi cation schemes that divide DCIS histologically into a variety of subtypes 
emphasize architectural features or growth patterns of the neoplastic cells, cytologic 
features, and cell necrosis, both singly and in combination. The traditional method 
for classifying DCIS lesions is primarily based on the growth pattern (architectural 
features) of the tumor and recognizes fi ve major types [ 4 – 7 ]:

•    The comedo type is characterized by prominent necrosis in the center of the 
involved spaces (Fig.  1.1 ). The necrotic material frequently becomes calcifi ed; 

  Fig. 1.1    Ductal carcinoma in situ (DCIS) of comedo type. This space shows rim of viable cells 
with high-grade nuclei and central comedo-type necrosis with focal calcifi cation       
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the calcifi cations may be detected mammographically, characteristically as lin-
ear, branching (“casting”) calcifi cations. The tumor cells are large and show 
nuclear pleomorphism; mitotic activity may be prominent (Fig.  1.1    ). The com-
edo type is more often associated with invasion [ 8 ,  9 ], and the degree of comedo 
necrosis in patients with DCIS appears to be a strong predictor for the risk of 
ipsilateral breast recurrence after treatment [ 10 ].

•      The cribriform type is characterized by the formation of back to back glands 
without intervening stroma. The cells comprising this subtype are typically small 
to medium sized and have relatively uniform hyperchromatic nuclei. Mitoses are 
infrequent and necrosis is limited to single cells or small cell clusters (Fig.  1.2 ).

•      The micropapillary type features small tufts of cells that are oriented perpendicu-
lar to the basement membrane of the involved spaces and project into the lumina. 
The apical region of these small papillations is frequently broader than the base, 
imparting a club-shaped appearance. The micropapillae lack fi brovascular cores. 
The cells comprising this type of DCIS are usually small to medium in size, and 
the nuclei show diffuse hyperchromasia; mitoses are infrequent (Fig.  1.3 ).

•      The papillary type shows intraluminal projections of tumor cells that, in contrast 
to the micropapillary variant, demonstrate fi brovascular cores and thereby con-
stitute true papillations. A variant of papillary DCIS, intracystic papillary carci-
noma, is characterized by tumor cells that are primarily or exclusively present in 
a single cystically dilated space [ 11 ,  12 ].  

•   The solid type is not as well defi ned as the other subtypes. It features tumor cells 
that fi ll and distend the involved spaces and lack signifi cant necrosis, fenestra-
tions, or papillations. The tumor cells may be large, medium, or small (Fig.  1.3 ).    

 Less common variants of DCIS include the “clinging” carcinoma [ 4 ,  13 ], intra-
ductal signet ring cell carcinoma [ 14 ], and cystic hypersecretory duct carcinoma 
[ 15 ,  16 ]. Similar to the comedo type, these variants may show calcifi cations that can 

  Fig. 1.2    Ductal carcinoma in situ (DCIS) of cribriform pattern. Multiple spaces within the prolif-
eration of monotonous (low-grade) cells are rounded and distributed in an organized fashion       
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be detected mammographically. However, the mammographic appearance of these 
microcalcifi cations is less distinctive than the pattern seen in comedo lesions and 
can resemble a number of benign processes. 

 A number of authors have proposed alternative classifi cation systems for DCIS 
[ 17 – 20 ]. Although they use different terminology, all are primarily based on nuclear 
grade and/or the presence or absence of necrosis and have in common the recogni-
tion of three main categories of DCIS (e.g., high, intermediate, and low grade).

•    High-grade lesions typically exhibit aneuploidy, lack estrogen and progesterone 
receptors, and have a high proliferative rate, overexpression of the HER2 onco-
gene, mutations of the p53 tumor suppressor gene with accumulation of its pro-
tein product, and angiogenesis in the surrounding stroma.  

•   Low-grade lesions are typically diploid and estrogen and progesterone receptor 
positive, have a low proliferative rate, and rarely (if ever) show abnormalities of 
the HER2/neu or p53 oncogenes.  

•   Lesions categorized histologically as intermediate grade are also intermediate 
between the high-grade and low-grade lesions with regard to the frequency of 
alterations in these biologic markers.    

 These classifi cation systems appear to correlate with biologic prognostic mark-
ers and predict groups of patients who are likely to have a recurrence of cancer fol-
lowing breast conservation therapy [ 17 ,  20 – 32 ]. 

 In 1997, a consensus conference was convened in an attempt to reach agreement 
on the classifi cation of DCIS [ 33 ]. Although the panel did not endorse any single 
classifi cation system, they recommended that certain features be routinely docu-
mented in the pathology report for DCIS lesions, including nuclear grade, the pres-
ence of necrosis, cell polarization, and architectural pattern(s).  

  Fig. 1.3    Ductal carcinoma in situ,  solid pattern . Cells show some variation in nuclear size and 
nuclei exhibit variably prominent nucleoli       
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1.3       Infi ltrating Ductal Carcinoma 

 Infi ltrating ductal carcinoma is the most common type of invasive breast cancer, 
accounting for 70–80 % of invasive lesions. It is also termed infi ltrating carcinoma 
of no special type or infi ltrating carcinoma not otherwise specifi ed (NOS). 

 On gross pathologic evaluation, these lesions are typically hard, gray–white, gritty 
masses which invade the surrounding tissue in a haphazard fashion to create the char-
acteristic irregular, stellate shape (Fig.  1.4 ). They are characterized microscopically 
by cords and nests of tumor cells with varying amounts of gland formation and cyto-
logic features that range from bland to highly malignant. The malignant cells induce 
a fi brous response as they infi ltrate the breast parenchyma, and this reaction is, in 
large part, responsible for the clinically and grossly palpable mass, the radiologic 
density, and solid sonographic characteristics of typical invasive carcinomas.

   Infi ltrating ductal carcinomas are divided into three grades based on a combina-
tion of architectural and cytologic features, usually assessed utilizing a scoring sys-
tem based on three parameters [ 34 ]:

•    Well differentiated (grade 1)—Well-differentiated tumors have cells that infi l-
trate the stroma as solid nests of glands. The nuclei are relatively uniform with 
little or no evidence of mitotic activity (Fig.  1.5 ).

•      Moderately differentiated (grade 2)—Moderately differentiated tumors have 
cells that infi ltrate as solid nests with some glandular differentiation. There is 
some nuclear pleomorphism and a moderate mitotic rate (Fig.  1.6 ).

•      Poorly differentiated (grade 3)—Poorly differentiated tumors are composed of 
solid nests of neoplastic cells without evidence of gland formation. There is 
marked nuclear atypia and considerable mitotic activity (Fig.  1.7 ).

  Fig. 1.4    Mastectomy specimen. The cut surface of the tumor is  gray white  and has an irregular 
stellate outline       
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  Fig. 1.5    Invasive ductal carcinoma, well differentiated (grade I)       

  Fig. 1.6    Invasive ductal carcinoma, moderately differentiated (grade II)       

  Fig. 1.7    Invasive ductal carcinoma, poorly differentiated (grade III). No evidence of glandular 
differentiation       
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      A variable amount of associated ductal carcinoma in situ (DCIS) is present in 
most cases; the extent of DCIS but not lobular carcinoma in situ (LCIS) is an 
important prognostic factor in patients treated with breast-conserving therapy 
in which the surgical goal is complete excision of both intraductal and invasive 
carcinomas [ 35 ].  

1.4        Infi ltrating Lobular Carcinoma 

 Infi ltrating lobular carcinomas are the second most common type of invasive breast 
cancer, accounting for about 5–10 % of invasive lesions. 

 Incidence rates of lobular cancer are rising faster than the rates of ductal carci-
noma in the USA, and postmenopausal hormone therapy may be more strongly 
related to lobular cancer risk than to ductal cancer risk. 

 Some infi ltrating lobular carcinomas have a macroscopic appearance identical to 
that of infi ltrating ductal cancers. However, in many cases no mass lesion is grossly 
evident, and the excised breast tissue may have a normal or only slightly fi rm con-
sistency. Thus, the microscopic size of invasive lobular carcinoma may be signifi -
cantly greater than that measured grossly. Some pathologists have used lack of 
immunohistochemical staining for E-cadherin to distinguish invasive lobular carci-
noma from invasive duct carcinoma. While it appears to be a reasonably accurate 
test, it is for the most part unnecessary in practice. 

 These tumors are characterized microscopically by small cells that insidiously 
infi ltrate the mammary stroma and adipose tissue individually and in a single-fi le 
pattern, often growing in a target-like confi guration around normal breast ducts, 
frequently inducing only minimal fi brous reaction (Fig.  1.8 ). Associated lobular 
carcinoma in situ (LCIS) is present in approximately two-thirds of cases; however, 
DCIS may also accompany invasive lobular carcinoma.

  Fig. 1.8    Invasive lobular carcinoma with classic uniform, single-cell fi les       
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   In addition to their different histologic appearance and mammographic 
 characteristics, there are distinct prognostic and biologic differences between infi l-
trating lobular and ductal cancers: 

 Infi ltrating lobular carcinomas have a higher frequency of bilaterality and multi-
centricity than infi ltrating ductal carcinomas [ 36 ,  37 ].

•    Infi ltrating lobular carcinomas arise in older women and are larger and better 
differentiated tumors [ 36 ,  38 ]. As a rule, invasive lobular carcinomas are ER 
positive, with variant lesions showing occasional variable expression.  

•   While older series report a similar prognosis for infi ltrating lobular cancers and 
invasive ductal lesions, more recent reports suggest that outcomes (at least in the 
short term) may be more favorable for lobular cancers and improving over time 
[ 39 ,  40 ]. However, variants of infi ltrating lobular carcinoma exist, some of which 
have a poorer prognosis [ 36 ].  

•   As a group, invasive lobular carcinomas tend to metastasize later than invasive 
duct carcinomas and spread to unusual locations such as peritoneum, meninges, 
and the gastrointestinal tract [ 41 ].    

 There is an association between mutations in the cadherin (CDH1) gene and 
invasive lobular breast cancers. Lobular breast cancers have been observed to occur 
in 20–54 % of women from families with hereditary diffuse gastric cancer who 
carry germline mutations in the CDH1 gene. However, germline CDH1 mutations 
can also be cosegregated with invasive lobular breast cancer in the absence of dif-
fuse gastric cancer, suggesting that gastric cancer is not an obligatory hallmark of 
families with CDH1 mutations. Furthermore, approximately 50 % of sporadic lobu-
lar breast cancers contain E-cadherin mutations [ 42 ,  43 ].  

1.5      Other Histologic Types 

 A number of other histologic types account for the remaining invasive breast can-
cers. These include tubular carcinoma, mucinous carcinoma, medullary carcinoma, 
invasive micropapillary carcinoma, metaplastic carcinoma, adenoid cystic carci-
noma, and others. 

1.5.1     Tubular Carcinoma 

 Tubular carcinomas were relatively infrequent in the pre-mammography era, 
accounting for 2 % or less of invasive breast cancers. However, in some series of 
mammographically screened populations, the incidence is higher, accounting for 
10–20 % of invasive cancers. 

1 Histopathology and Grading of Breast Cancer
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 Tubular carcinoma is characterized by the presence of well-formed tubular or 
glandular structures infi ltrating the stroma (Fig.  1.9 ):

•     The tubules tend to be elongated, and many have pointed ends.  
•   The cells composing the tubules are cuboidal to columnar and often have apical 

cytoplasmic protrusions or “snouts.”  
•   The tumor cells are cytologically low grade.  
•   Associated DCIS, typically of the low-grade type, is present in about three- 

quarters of the cases.    

 These lesions have a relatively favorable prognosis compared with infi ltrating 
ductal carcinomas; the natural history is favorable, and metastases are rare [ 1 ,  39 , 
 44 – 46 ].  

1.5.2     Mucinous (Colloid) Carcinoma 

 Mucinous carcinomas account for between 1 and 2 % of invasive breast cancers and 
appear to be more common in older patients. These lesions usually have a soft 
gelatinous appearance on gross examination, and they tend to be well circumscribed. 
Mucinous carcinomas are characterized microscopically by nests of tumor cells dis-
persed in large pools of extracellular mucus; the cells tend to have uniform, low- 
grade nuclei (Fig.  1.10 ). Similar to tubular carcinomas, these lesions also represent 
a prognostically favorable variant of invasive breast carcinoma [ 1 ,  39 ,  45 ,  47 ].

  Fig. 1.9    Tubular carcinoma. There is a haphazard distribution of rounded and angulated tubules 
with open lumina, lined by a single layer of epithelial cells separated by abundant reactive fi bro-
blastic stroma       
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1.5.3        Medullary Carcinoma 

 Medullary carcinomas account for anywhere from 1 to 10 % of invasive breast can-
cers. However, there is considerable interobserver variability in the diagnosis of this 
type of breast cancer which is, at least in part, dependent upon the classifi cation 
system employed [ 48 – 50 ]. 

 Medullary carcinomas are well circumscribed on macroscopic examination and 
are often soft and tan brown with areas of hemorrhage or necrosis. Circumscription 
of the lesion is also evident microscopically. The tumor cells are poorly differenti-
ated (high grade), grow in a syncytial pattern, and have an intense associated lym-
phoplasmacytic infi ltrate (Fig.  1.11 ), and this tumor is actually quite rare when strict 
diagnostic criteria are followed.

   Medullary and medullary-like carcinomas occur more frequently in younger 
patients than other types of breast cancer. They are also more frequent in women 
who inherited mutations of the BRCA-1 gene (10 % of breast cancers are medullary 
in this population, as compared with <1 % of non-BRCA1-related breast cancers). 
However, the majority of breast cancers in patients with BRCA-1 gene mutations 
(90 %) are not medullary [ 51 ]. 

 The prognosis for pure medullary carcinomas appears to be somewhat more 
favorable than that of infi ltrating ductal carcinomas, despite their aggressive histo-
logic appearance [ 1 ,  39 ,  45 ,  52 ].  

1.5.4     Tubulolobular Carcinoma 

 Tubulolobular carcinoma is an often unrecognized breast cancer variant that, as the 
name implies, has hybrid histologic characteristics of tubular and invasive lobular 

  Fig. 1.10    Mucinous carcinoma. Lakes of mucus are separated by fi brous stroma. A few clusters 
of carcinoma cells are fl oating in the mucus lakes       
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carcinoma with the same cells comprising well-formed glands contiguous with 
single- fi le infi ltration of stroma. While immunohistochemical studies imply a ductal 
phenotype [ 53 ], from a radiologic and clinical point of view, the tumor is more akin 
to invasive lobular carcinoma in that its imaging characteristics are identical to lobu-
lar breast cancer, and there is the same tendency to multifocality and multicentricity. 
In terms of staging, however, the tumors behave more like invasive moderately dif-
ferentiated ductal carcinoma in that they have the same likelihood of nodal metasta-
ses when matched by size. Often these tumors are misclassifi ed as invasive 
carcinoma with mixed ductal and lobular features.  

1.5.5     Micropapillary Carcinoma (Fig.  1.12 ) 

       Invasive micropapillary carcinoma is a particularly aggressive form of cancer that 
has a proclivity for lymph node metastasis even when small in size [ 54 ].  

1.5.6     Metaplastic Carcinoma 

 Metaplastic carcinoma is a well-circumscribed tumor that consists of various com-
binations of poorly differentiated ductal adenocarcinoma, mesenchymal (sarcoma-
tous), and other epithelial (e.g., squamous cell) components (Fig.  1.13 ) [ 55 ,  56 ].

   Whether these tumors have a worse prognosis than ordinary invasive ductal can-
cers is unclear. Some studies suggest that tumors in which the squamous cell 

  Fig. 1.11    Medullary carcinoma. Syncytial high-grade tumor cell accompanied by lymphoplasma-
cytic infi ltrates       
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component predominates (more than 90 % of the malignant cells are of squamous 
type) are more aggressive and frequently treatment refractory when compared with 
other infi ltrating ductal cancers [ 57 ,  58 ]. However, because metaplastic breast can-
cer was not offi cially recognized as a distinct pathologic diagnosis until 2000, 
knowledge about treatment patterns and outcomes is limited. 

 The characteristics of 892 metaplastic breast cancers reported to the National 
Cancer Database between 2001 and 2003 were compared with those of 255,164 

  Fig. 1.12    Invasive micropapillary carcinoma. Tumor cell clusters with irregular central spaces 
proliferate within empty stromal spaces       

  Fig. 1.13    Metaplastic carcinoma with squamous differentiation. Variously shaped spaces with 
squamous epithelium are characteristic       
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typical infi ltrating ductal carcinomas [ 56 ]. In contrast to patients with infi ltrating 
ductal cancers, the following signifi cant differences were noted in the group with 
metaplastic tumors:

•    Fewer T1 tumors (30 versus 65 %)  
•   More node-negative tumors (78 versus 66 %)  
•   More poorly differentiated or undifferentiated tumors (68 versus 39 %)  
•   Fewer estrogen receptor-positive tumors (11 versus 74 %)    

 Treatment outcomes were not reported. Despite the perception of a worse prog-
nosis, all metaplastic breast cancers are treated similarly to other invasive breast 
cancers [ 59 – 61 ].  

1.5.7     Adenoid Cystic Carcinoma (Fig.  1.14 ) 

    The rare adenoid cystic carcinoma of the breast has a distinctive histologic pattern 
that is morphologically identical to adenoid cystic carcinomas found in the salivary 
glands (and other sites). This tumor tends to be associated with a favorable progno-
sis, even when tumor size is large; the reported incidence of axillary metastases in 
most series is less than 5 % [ 62 ,  63 ]. 

 Histologic grading based upon the percentage of solid areas (as is used for sali-
vary gland tumors) has been suggested as being prognostically useful [ 64 ], although 
others disagree [ 63 ]. At least two series in which outcomes were not as favorable as 
in most reports were predominated by patients with higher-grade tumors (i.e., the 
solid variant) [ 65 ,  66 ].   

  Fig. 1.14    Adenoid cystic carcinoma. Tumor is composed of proliferating glands (adenoid compo-
nent) and stromal components distributed in varying proportions       
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1.6     Tests on Breast Tissue 

1.6.1     Hormone Receptors 

 Assay of hormone receptors has become a routine part of the evaluation of breast 
cancers, since the results predict the clinical response to hormone therapy, both in 
the adjuvant setting and for those with metastatic disease. The assays are discussed 
in detail elsewhere. 

 The prognostic importance of ER (Fig.  1.15 ) and PR expression has been a mat-
ter of debate for many years. However, taken together, the available evidence sug-
gests that ER-/PR-negative tumors have a worse prognosis, at least in the fi rst 5–10 
years after treatment. On the other hand, other data suggest that as a result of 
sequential improvements in adjuvant chemotherapy (which disproportionately ben-
efi ts those with hormone receptor-negative tumors) over time, the prognosis of indi-
viduals with ER-/PR-negative breast cancer now approaches that of patients with 
hormone receptor-positive disease.

   In keeping with ASCO guidelines, ER/PR analysis should be performed rou-
tinely in all invasive breast cancers using either immunohistochemistry (IHC) or the 
now rarely used ligand binding assay [ 67 ]. The information should be used to select 
patients who are most likely to respond to hormone therapy. The prognostic impli-
cations of hormone receptor expression are discussed in more detail elsewhere.  

  Fig. 1.15    Expression of estrogen receptor (ER) in invasive breast cancers as determined by immu-
nohistochemistry. Approximately 100 % tumor cell nuclei are positive       
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1.6.2      Markers of Proliferation 

 In general, markers of an elevated proliferative rate correlate with a worse prognosis 
in untreated patients [ 68 ]. The proliferative rate of breast tumors may be assessed by 
a variety of methods, including mitotic counts, thymidine labeling index, bromode-
oxyuridine (BrdU) labeling, S-phase fractions as determined by fl ow cytometry, 
IHC using monoclonal antibodies (MoAbs) to antigens found in proliferating cells 
(e.g., Ki-67 or proliferating cell nuclear antigen [PCNA/cyclin]), and the assess-
ment of argyrophilic nucleolar organizer regions (AgNOR). 

 Guidelines from an expert panel on tumor markers proposed by ASCO in 2007 
do not recommend the routine use of any markers of proliferation to assign patients 
to prognostic groups [ 67 ]. 

 Dozens of studies have been undertaken to explore the relationship between 
Ki-67 status and prognosis in breast cancer [ 69 ,  70 ]. A meta-analysis of 46 studies 
(over 12,000 patients) came to the following conclusions [ 70 ]:

•    Using cutoff values for Ki-67 positivity from the original studies (range 3.5–
34 %), Ki-67/MIB-1 positivity was associated with a signifi cantly higher risk of 
relapse in both node-positive (hazard ratio 1.59, 95 % CI 1.35–1.87) and node- 
negative diseases (HR 2.31, 95 % CI 1.83–2.92).  

•   There was also a signifi cant relationship between Ki-67/MIB-1 positivity and 
worse breast cancer survival in node-positive (HR for death 2.33, 95 % CI 1.83–
2.95) and node-negative disease (HR 2.54, 95 % CI 1.65–3.91).    

 However, an exceptionally thorough review of the literature on IHC-based mark-
ers of proliferation in breast cancer emphasized the lack of prospective studies and 
the diffi culty with literature interpretation due to lack of standardization of assay 
reagents, procedures, and scoring, reinforcing the position taken by the ASCO 
expert tumor marker committee in its 2007 updated guidelines [ 71 ].  

1.6.3     HER2 Overexpression 

 Amplifi cation or overexpression of the HER2 oncogene is present in approximately 
20 % of primary invasive breast cancers. Assay for HER2 overexpression and/or 
amplifi cation is recommended as a routine part of the diagnostic work-up on all 
primary breast cancers [ 67 ,  72 ]. 

 The main benefi t of HER2 testing is its predictive value (Fig.  1.16 ). High levels 
of HER2 expression (3+ by IHC or an amplifi ed HER2 gene copy number by FISH 
[ 72 ]) identify those women who might benefi t from trastuzumab in both the adju-
vant and metastatic disease settings. High levels of HER2 expression (3+ by IHC or 
an amplifi ed HER2 gene copy number by fl uorescence in situ hybridization [FISH]) 
represent an important predictive factor, identifying those patients who might 
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benefi t from treatments that target HER2, such as trastuzumab, in both the adjuvant 
and metastatic disease settings. Guidelines for HER2 testing from a joint ASCO/
CAP consensus panel [ 72 ], the data on HER2 status and treatment as well as recom-
mendations for optimal performance, interpretation, and reporting of individual 
assays are discussed in detail elsewhere.

   The weight of evidence suggests that HER2 overexpression is a negative prog-
nostic factor. In most, but not all studies, HER2 overexpression in primary tumor 
tissue (as determined by IHC) is associated with a worse prognosis in untreated 
patients [ 73 – 76 ]. In some, HER2 overexpression correlates with other factors 
 associated with a poor prognosis (such as tumor grade, size, nodal status) [ 77 ]. 

 The independent contribution of HER2 overexpression in tumor tissue as a 
marker of poor prognosis in patients with node-positive disease is fairly consistent 

  Fig. 1.16    Positive Her2 testing of invasive breast cancer by immunohistochemistry. More than 
30 % of tumor cells show strong complete membrane staining       
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[ 78 – 81 ]. Although early studies were unclear about the prognostic role of HER2 in 
node-negative untreated patients, more recent studies have provided more clarity. In 
a cohort of 2026 patients with node-negative breast cancer, of whom 70 % did not 
receive adjuvant systemic therapy, HER2 expression (as assessed by IHC on tissue 
microarrays, with FISH confi rmation for those with 2+ IHC staining) was indepen-
dently associated with signifi cantly worse 10-year relapse-free (66 versus 76 %) 
and breast cancer-specifi c survival (76 versus 86 %) [ 82 ]. Almost 90 % of the 
tumors in this series were >1.0 cm in size. 

 However, the added value of this information in clinical practice is questionable, 
and the ASCO expert panel on tumor markers in breast cancer did not recommend 
the use of HER2 for determining prognosis, largely because outcomes are heavily 
infl uenced by subsequent therapy [ 67 ].  

1.6.4     Multigene Predictors of Clinical Outcome 

 Gene expression profi ling has identifi ed molecular signatures, such as the 21-gene 
recurrence score (RS, Oncotype Dx ® ), the Amsterdam 70-gene prognostic profi le 
(MammaPrint ® ), and the Rotterdam/Veridex 76-gene signature, that augment con-
ventional prognostic indicators in their ability to predict breast cancer outcome and 
response to treatment. 

 The 21-gene recurrence score can be used to predict the risk of recurrence in 
patients with newly diagnosed, node-negative, estrogen receptor (ER)-positive dis-
ease and to identify patients who are likely to benefi t from chemotherapy added to 
adjuvant endocrine therapy. Preliminary data also suggest utility of the 21-gene 
recurrence score in patients with node-positive, ER-positive breast cancer. Although 
use of the test has been cleared by the US FDA for women with ER-positive early 
breast cancer and one to three positive nodes, further prospective validation in this 
group is awaited. 

 Gene expression profi ling has also been instrumental in developing the molecu-
lar classifi cation of breast cancer.  

1.6.5      Urokinase Plasminogen Activator System 

 Urokinase plasminogen activator (uPA) is a serine protease with an important role in 
cancer invasion and metastases [ 83 ]. When bound to its receptor (uPAR), uPA con-
verts plasminogen into plasmin and mediates degradation of the ECM during tumor 
cell invasion. Specifi c inhibitors of uPA (plasminogen activator inhibitors [PAI] 
types 1 and 2) have been identifi ed. PAI-1 levels are high in tumor tissue and plasma, 
and PAI-1 is inactivated when bound to uPA. In contrast, PAI-2 is usually present in 
low levels except for some conditions such as pregnancy or myeloid leukemia [ 83 ]. 

M. Esebua



19

 The ASCO expert panel recommended that measurement of uPA and PAI-1 by 
ELISA on at least 300 mg of fresh or frozen breast cancer tissue may be used for 
determination of prognosis in patients with newly diagnosed, node-negative breast 
cancer [ 67 ]. While preliminary reports are promising for immunohistochemical 
staining to determine uPA and PAI-1 status, validation is needed.

•    In retrospective reports, high levels of uPA, uPAR, and PAI-1 have been associ-
ated with shorter survival in women with breast cancer, while high levels of 
PAI-2 were associated with better outcomes [ 83 – 86 ]. Further support for the 
prognostic value of these molecules was derived from a pooled analysis of indi-
vidual patient data from 8,377 women treated in clinical trials sponsored by the 
EORTC, in which tumor uPA and PAI-1 levels were determined in primary 
tumor tissue extracts [ 87 ]. In multivariate analysis, uPA and PAI-1 levels were 
the strongest predictors of disease-free and overall survival, after nodal status, 
for all patients combined. Although higher uPA and PAI-1 levels were associated 
with poorer outcomes in women with both node-positive and node-negative dis-
eases, expression of uPA or PAI-1 was the strongest signifi cant predictor of 
relapse-free survival (hazard ratio [HR] 2.3 for uPA and 1.9 for PAI-1) in women 
with node-negative disease, particularly when expression of both markers was 
considered together.  

•   Much of the data on uPA and PAI-1 concern its ability to stratify women with 
node-negative early breast cancer into prognostically relevant subgroups. In an 
initial report of 269 women with node-negative disease (none of whom received 
chemotherapy) whose primary tumors were assayed for uPA and PAI-1, high 
levels of both predicted a signifi cant 3.9-fold higher risk of relapse and a 2.8-fold 
higher risk of death [ 88 ]. 

 A low level of both markers is associated with a suffi ciently low risk of 
recurrence, particularly in women with ER-/PR-positive disease who will 
receive adjuvant hormone therapy, that the additional benefi t derived from 
chemotherapy is minimal. CMF-based chemotherapy provides substantial 
benefi t, compared with observation alone, in patients with high levels of uPA 
and PAI-1.  

•   Enthusiasm for the use of uPA and PAI-1 as prognostic indicators in the USA is 
tempered by problems with assay methodology. Nearly all of the prognostic data 
have been derived by measuring these factors in relatively large frozen tissue 
sections removed at the time of resection by ELISA. With the widespread adop-
tion of IHC techniques to determine ER and PR status, routine tissue freezing of 
breast cancer specimens has been discontinued, obviating the need for expensive 
equipment and supplies for freezing and sample storage. Returning to such a 
system would require a major paradigm shift in this country. Although prelimi-
nary data on IHC staining for uPA and PAI-1 in cryostat specimens support 
the utility of this technique, studies correlating these results with outcome are 
lacking [ 89 ]. As a result, assessment of these markers is still considered investi-
gational in the USA.     
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1.6.6      P53 Gene Analysis 

 Mutations in the p53 tumor suppressor gene or accumulation of p53 protein 
(a mutated p53 gene produces a protein that is not degraded as quickly as the wild-
type protein leading to protein accumulation which can be detected by IHC) are 
reported in 20–50 % of human breast cancers. These abnormalities are more often 
seen in patients with hereditary breast cancer syndromes (such as the familial 
breast and ovarian cancer and Li-Fraumeni syndromes) than in those with sporadic 
breast cancer [ 90 ]. 

 A number of studies, including a 1999 meta-analysis, suggest that high tissue 
p53 protein levels (as measured by IHC) or mutations or deletions in the p53 gene 
represent an independent predictor of decreased disease-free and overall survival in 
both node-positive and node-negative patients [ 91 – 98 ]. However, other studies have 
failed to fi nd an association between p53 abnormalities and clinical outcomes [ 91 , 
 99 ,  100 ]. 

 The likely explanation for the variable results regarding p53 and prognosis is the 
confounding effect of adjuvant systemic therapy [ 101 ]. While p53 abnormalities 
might be associated with a worse prognosis in untreated patients, they might also be 
associated with sensitivity to some therapeutic agents and resistance to others. Thus, 
p53 mutations or deletions might confer a favorable or unfavorable prognosis 
depending on the specifi c type of treatment. 

 The ASCO panel on tumor markers concluded that IHC for p53 protein was 
unlikely to provide suffi ciently accurate results to be clinically useful [ 67 ]. At pres-
ent, there is no role for p53 gene analysis in women with breast cancer.  

1.6.7     Other Markers of Invasion and Metastasis 

 Many other markers of invasion and metastatic potential have been proposed and/or 
studied in retrospective reports. These include nm23, E-cadherin, catenins, tissue 
inhibitors of metalloproteinases (TIMPs), prostate-specifi c antigen, tissue factor, and 
osteopontin [ 102 – 110 ]. Allelic loss, microsatellite instability, or methylation silenc-
ing of tumor suppressor genes may also provide prognostic information [ 111 – 114 ]. 

 All of these potential indicators of prognosis require further evaluation and valida-
tion. None should be considered routine in the evaluation of breast cancer specimens.   

1.7     Summary 

•     DCIS is characterized by a proliferation of abnormal cells confi ned within the 
mammary ductal system (See Sect.  1.2  above).

 –    DCIS is commonly classifi ed according to architectural and cytologic fea-
tures and cell necrosis as low and intermediate grade (papillary, cribriform, 
and solid) and high grade (comedo).  
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 –   DCIS represents a precursor to invasive breast cancer.     

•   The invasive breast carcinomas consist of several histologic subtypes.

 –    Infi ltrating ductal carcinoma is the most common type of invasive breast 
 cancer, accounting for 70–80 % of invasive cancers (See Sect.  1.3 ).  

 –   Infi ltrating lobular carcinoma is the second most common invasive breast 
 cancer, accounting for 5–10 % of invasive cancers (See Sect.  1.4 ).  

 –   As compared with infi ltrating ductal carcinomas, infi ltrating lobular carcino-
mas tend to be multicentric and/or bilateral, more differentiated, and hormone 
receptor positive, arise in older women, metastasize later, and spread to 
unusual locations, such as meninges, peritoneum, or gastrointestinal tract 
(See Sect.  1.4 ).  

 –   Other less common invasive breast carcinoma histologies include tubular, 
mucinous, and medullary carcinomas (See Sect.  1.5 ).     

•   The only uniformly accepted prognostic markers that provide critical informa-
tion necessary for treatment decisions are TNM stage, axillary lymph node sta-
tus, tumor size and grade, hormone receptor status, and HER2 receptor status.

 –    Guidelines for measurement and use of prognostic markers are available 
from a 2007 ASCO expert panel on tumor markers in breast cancer [ 67 ]. We 
agree with these recommendations. ER, PR, and HER2 overexpression 
should be evaluated on every primary invasive breast cancer. Hormone recep-
tor expression should be used to guide endocrine therapy decisions. HER2 
expression should be used to select patients for whom HER2-directed ther-
apy use is appropriate in the metastatic and adjuvant setting. The available 
data are insuffi cient to recommend that HER2 overexpression be used for 
determining prognosis in patients with early breast cancer. Furthermore, 
there is insuffi cient evidence to support the clinical use of serum HER2 extra-
cellular domain (ECD) testing.  

 –   Multiparameter gene expression analysis (i.e., the Oncotype DX™ assay) 
should be used to predict the risk of recurrence in women with newly diag-
nosed, node-negative, ER+ breast cancer who will be receiving tamoxifen. A 
low recurrence score should be used to identify patients who are predicted to 
obtain the most therapeutic benefi t from tamoxifen and who may not require 
adjuvant chemotherapy. Patients with a high recurrence score appear to 
derive relatively more benefi t from chemotherapy (specifi cally the CMF regi-
men) than from tamoxifen. (See “Prognostic molecular profi les of breast 
cancer.”).  

 –   Measurement of urokinase plasminogen activator (uPA) and plasminogen 
activator inhibitor-1 (PAI-1) by ELISA on fresh or frozen tissue may be used 
for determination of prognosis in patients with newly diagnosed, node- 
negative breast cancer. Low levels of both markers are associated with a suf-
fi ciently low risk of recurrence, particularly in women with ER-/PR-positive 
disease who will receive adjuvant hormone therapy that the additional benefi t 
of chemotherapy is minimal (see Sect.  1.6.5 ).  

1 Histopathology and Grading of Breast Cancer



22

 –   The data are insuffi cient to recommend the use of p53 or immunohistochemi-
cally based markers of proliferation to assign patients to prognostic groups 
(see Sects.  1.6.2  and  1.6.6 ).           
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    Abstract     Multiple breast cancers may present with different clinical and biological 
characteristics as compared with unicentric disease, and in certain instances this 
may have implications as far as treatment is concerned. Multiple tumors may have 
increased lymph node involvement compared with unifocal tumors, and some avail-
able data suggest that multifocal/multicentric breast cancer is actually more aggres-
sive and carries worse overall outcomes than unifocal disease. In other studies, 
multifocality itself does not appear to be a contributing factor for worse outcome; 
more aggressive systemic disease or decreased response to systemic therapies, 
instead, seem to play a role. It has been suggested that multi- and unifocal tumors 
do not share the same biology since factors other than those currently employed for 
staging and prognostic purposes have been shown to affect behavior. In fact, the 
prognostic impact of multiple breast cancer has been poorly studied, and the neces-
sity for specifi c adjuvant treatment in order to counteract the potentially unfavorable 
effect of multifocality is still subject to investigation.  

2.1         Introduction 

 The presence of multiple foci of disease in the cancer-containing breast has been 
reported during most of the twentieth century [ 1 ]. Its signifi cance has been lively dis-
cussed over the last 30 years [ 2 ], and sequential revisions of the biological and clinical 
implications of multiple breast cancer foci have followed one another over time; at least 
in part, the interpretation of multicentric tumors has been paralleled by the contempo-
rary shift in paradigms for the treatment of breast cancer, with mutual infl uence.  
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2.2     Multifocality: What Defi nition? 

 In our opinion, the peculiarity of multifocal/multicentric breast cancer resides in the 
question whether the intrinsic profi le of a certain multiple breast cancer can be 
extrapolated from the characterization of a single lesion (namely, the major, as is 
currently assumed) or, otherwise, whether each focus carries its own independent 
contribution to the overall behavior of the disease. An additional issue is whether 
multifocality itself may represent an independent biological feature to take into 
account when outlining a tumor profi le. 

 The early fi ndings by Holland et al. [ 3 ] (see below) in terms of high prevalence 
of multiple cancer foci as well as his depiction of the distribution of multiple lesions 
over a sort of topographic gradient around the biggest focus were fully confi rmed in 
more recent studies: for example, Vaidya et al. reported [ 4 ] that 63 % of patients in 
their series harbored multiple foci in addition to the primary tumor and, in particular, 
only 53 % of patients had all foci contained within 2 cm, while 80 % of lesions could 
be found within 4 cm and 90 % within 5 cm of the main tumor edge. The importance 
of such a distribution of cancer within the breast has come to be well valorized after 
breast-conserving surgery became a standard procedure in order to optimize breast 
conservation [ 5 ], and, possibly, it has even been enhanced by the most extreme con-
servative efforts adopted in most recent times, such as oncoplastic surgery. 

 However, results in the literature regarding the signifi cance of multiple breast 
cancer foci are still confl icting, and the impact of multifocality on overall survival 
is still controversial, mainly due to the use of various defi nitions lacking a wide 
international consensus and to methodological limitations [ 6 ]. 

 Several defi nitions have in fact been used in the literature addressing multifocal 
breast cancer. Some studies required that tumors should be separated from each other 
by some arbitrarily selected distance or be located in different quadrants of the breast 
to be considered multifocal. Others included carcinoma in situ in the defi nition of 
multifocality [ 7 ] or used the term multicentricity as well: e.g., Katz et al. [ 8 ] defi ned 
“multicentricity” as more than two areas of carcinoma in more than one quadrant of 
the breast and separated by at least 4 cm, while “multifocality” was defi ned as two or 
more separate areas of carcinoma within the same quadrant and/or separated by less 
than 4 cm. Often multicentricity implies more than one primary tumor, whereas mul-
tifocality indicates multiple foci of the same tumor; some researchers operate with a 
minimum distance between the foci of 2 cm, and others require normal breast tissue 
between tumors but no minimal distance between the tumor foci [ 9 ]. 

 Some authors, on the other hand, stated that the dichotomous classifi cation of 
multifocal and multicentric disease is arbitrary and could simply represent different 
degrees of spatial separation rather than any biological difference between catego-
ries; breast quadrants are indeed typically defi ned by tracing lines which radiate 
perpendicularly from the nipple, but the lack of anatomical boundaries within the 
breast can result in variability of these “quadrants” with respect to patient position 
and the modality of assessment (clinical or radiological); therefore, lesions in 
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different quadrants can in fact have closer proximity than lesions occupying remote 
locations within the same quadrant [ 10 ]. 

 It could thus be argued that despite being quite common in practice, categorizing 
multifocality solely on metric parameters may not be the most effective approach, 
and, actually, for some authors the defi nition of multifocality based on the distance 
between the individual foci appears to impede the ability to obtain comparable and 
signifi cant results, fi rst, because the biological importance of a distance is hard to 
test but also because it is impossible to achieve consensus regarding the required 
amount of millimeters [ 6 ]. 

 In one study of cytogenetic changes, macroscopically distinct tumors in 9 of 12 
mastectomy specimens were monoclonal, suggesting a common origin [ 11 ], and in 
these monoclonal cases, multiple foci were in closer proximity. Similar fi ndings 
resulted from a study where a panel of immunohistochemical markers was utilized 
[ 12 ]. These data would need confi rmation with contemporary profi ling techniques 
but would suggest that when multiple lesions are in close proximity (multifocal), 
they are biologically similar, but not so when they are far apart (multicentric) [ 2 ]. 
However, on the practical side, even with molecular studies it can be diffi cult to 
differentiate between multifocal tumors, defi ned as the presence of multiple foci 
of the same tumor, and multicentric carcinomas, defi ned as multiple primary carci-
nomas in the same breast [ 13 ], hence many recent studies did not attempt to 
separate them. 

 In this vein, it has also been suggested that a classifi cation based on quadrant 
location and distance from the nipple and rooted in the notion that the “quadrants” of 
the breast have some anatomic and biological meaning needs to be reconsidered [ 2 ]. 
A trend in this direction has been included among the changes from the sixth to the 
seventh edition of the AJCC Cancer Staging Manual, where it has been acknowl-
edged that it is not necessary for tumors to be in separate quadrants to be classifi ed 
as multiple simultaneous ipsilateral carcinomas, providing that they can be unam-
biguously demonstrated to be macroscopically distinct and measurable using avail-
able clinical and pathological techniques [ 14 ].  

2.3     Multifocality and Breast Conservative Treatment 

 From approximately 1890 to 1970, radical mastectomy as introduced by William 
Halsted was generally accepted as the standard treatment for breast cancer [ 1 ], and 
the many studies that were carried out over such period in order to investigate mul-
ticentricity in breast cancer were conducted mainly with the purpose of understand-
ing the process of  origin  of multiple cancers: due to the lack of therapeutic 
alternatives to destructive surgery, the relevance of multifocality in terms of treat-
ment is yet to come. In the mid-1970s, Fisher et al. effectively summarized the fi nd-
ings yielded so far by the studies in the domain of breast cancer multicentricity 
when they stated that “the detection of multicentric cancers in mammary quadrants 
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other than that harboring the primary cancer in mastectomy specimens represents a 
conservative estimate since the probability of identifying such a lesion appears to 
increase as the number of [tissue] samples [examined] per patient increases” [ 15 ]. 

 Actually, the incidence of multicentric foci in the breast has been reported to 
vary from 18 %, when 1–2 random samples from each quadrant were examined 
[ 16 ], to 69 % when 5 mm sections of whole breast were examined [ 17 ]. 

 Some studies that addressed the topic of multiple breast cancer [ 18 ] used 
radiography, but it was Egan [ 17 ] who standardized the “correlated pathological- 
radiological” method of whole-organ analysis, which provides optimum 
sampling of breast tissue. Many studies conducted with Egan’s technique on 
this matter over the years reported rates of multiple lesions ranging from 56 % 
[ 19 ] to 69 % [ 17 ]. 

 In the 1970s, the major debate in the local therapy of breast cancer was the safety 
of the switch from radical mastectomy to modifi ed radical mastectomy. In that envi-
ronment, the National Surgical Adjuvant Breast and Bowel Project (NSABP)-B04 
trial [ 15 ] studied the contribution to survival deriving from the removal of the axil-
lary nodes in clinically node-negative women: its results eventually led to the direct 
repudiation of the Halstedian concept of breast cancer biology and opened the door 
to studies that tested the effectiveness of breast conservation treatment. 

 Over the course of the studies on breast conservation, the new option of partial 
removal of the breast coupled with the long-standing awareness of high frequency 
of additional cancer foci beyond an index lesion focused concerns upon the eventu-
ality of local recurrences and brought into focus the importance of assessing the 
extent and the topographical distribution of tumor foci in the surroundings of an 
overt cancer. 

 In a landmark paper on multifocality, Holland et al. [ 3 ] examined with Egan’s 
method a consecution series of breast cancers that appeared clinically and radiologi-
cally unifocal and that constituted virtual candidates to conservative treatments; the 
actual presence of additional undetected cancer foci beyond the index lesion was 
studied in mastectomy specimens of these cases with the purpose to estimate the 
frequency with which tumor would remain in the breast after a breast-conserving 
surgical intervention. 

 Their results showed that only a minority of tumors had their clinical unifocality 
confi rmed in the surgical specimen, and actually a 63 % rate of multicentricity was 
reported; moreover, the authors addressed the additional issue of the spatial distri-
bution of clinically undetected foci in terms of their distances from the primary 
tumor, and the results showed that the likelihood of fi nding additional tumor foci in 
breast tissue decreased as the distance from the index lesion increased, despite the 
size of the index tumor. 

 In other words, assuming the distance of additional tumor foci from the index 
lesion as a surrogate for the surgical margin during breast-conserving surgery for 
infi ltrating carcinoma, the percentage of patients still harboring tumor foci follow-
ing excision would be higher with a margin of 2 cm rather than 4 cm (42 % and 
10 %, respectively, according to Holland). Therefore, the emerging scenario was 
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that an average quadrantectomy on an average-sized breast was unlikely to remove 
all cancer foci: earlier concerns “that local excision may ignore residual tumors, 
particularly those which may occur as clinically and pathologically undetected de 
novo cancers at sites within the breast quite remote from the dominant mass” [ 15 ] 
still represented a deterrent to the acceptability of breast-conserving surgery. 

 At this stage it was diffi cult to scientifi cally accept the possibility that a cancer 
might not be a cancer of clinical signifi cance and there was a need for information 
regarding the kinetics of the multicentric foci. In 1969 a randomized study to com-
pare radical mastectomy with breast-conserving surgery, which was termed 
“quadrantectomy,” was approved by the World Health Organization Committee of 
Investigators for Evaluation of Methods of Diagnosis and Treatment of Breast 
Cancer; after the new procedure was standardized, the recruitment of patients began 
at the Milan Cancer Institute in 1973, and preliminary data showed that survival 
rates were equal after radical and breast-conserving surgery [ 20 ]. A few years later, 
another randomized controlled clinical trial—NSABP-06 [ 21 ]—was conducted in 
order to evaluate the effi cacy of breast-conserving surgery and the biological impor-
tance of tumor multicentricity: after 20 years of follow-up, the absence of a signifi -
cant difference in overall survival among women who underwent mastectomy and 
those who underwent conservation treatment was confi rmed. Besides, the rate of 
ipsilateral breast tumor recurrence, as well, did not differ signifi cantly among the 
two groups [ 22 ]. Over time, the association of breast-conserving surgery with radio-
therapy has proved to grant patients equivalent survival with respect to mastectomy, 
as pointed out by six prospective randomized trials with long-term follow-up, some 
more than 20 years [ 22 ]. 

 Moreover, adjuvant treatments have been extensively employed and refi ned with 
increasing success: in a report of 3,799 node-negative women participating in fi ve 
NSABP trials of adjuvant systemic therapy, the cumulative incidence of in-breast 
recurrence at 12 years for those receiving adjuvant therapy was only 6.6 % [ 23 ]. 

 In summary, the persistence of tumor foci after breast conservation treatment 
was known for a fact, but, nevertheless, the observation of increasing survival rates 
and a parallel decrease in local recurrence due to improvements in adjuvant treat-
ments and refi nements of diagnostic tools led to the replacement of concerns about 
the mere presence of remnant cancer cells by issues concerning the specifi c biologi-
cal feature of the (remaining) disease. 

 The importance of biology and targeted therapy has been supported by the 
emerging literature on the impact of tumor subtypes on local recurrence after BCT 
or mastectomy. Both Millar et al. [ 24 ] and Nguyen et al. [ 25 ] demonstrated that the 
rate of local recurrence after BCT varies among the intrinsic subtypes of breast 
cancer as approximated by the ER, progesterone receptor (PgR), and human epider-
mal growth factor receptor (HER)-2 status.  
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2.4     Multifocality and Outcome 

 When it comes to considering outcomes of multiple tumors, overall survival and 
other prognostic factors (that may in turn indirectly affect overall survival) should 
deserve distinct consideration. 

 An insight of the appropriateness in this separation comes from a study published 
by Pedersen et al. [ 9 ], which also offers an effective example of mismatches in results 
due to differences in defi nitions and methodologies. Pedersen et al. reported that in a 
study from 1982 [ 17 ], Egan found that the presence of multifocality signaled a worse 
prognosis, while in their own investigation, it was not found to have an independent 
effect on overall survival, when controlling for known prognostic factors. The fi nd-
ings Pedersen reported were in accordance with the data published by Rakowsky 
et al. [ 26 ], who also found that multifocality had no infl uence on disease-free sur-
vival, and those of Vlastos et al. [ 27 ], who found in a set of patients with early-stage 
cancer that patients with unicentric tumors had a 10-year disease-free survival of 
84 % and the patients with multicentric tumors had a 10-year disease-free survival of 
83 %. The differences in the conclusions reported by Egan and Pedersen could be 
explained by differences in the criteria adopted for defi ning multifocality (Egan had 
a broader defi nition of multifocality including lobular carcinoma in situ) and by the 
fact that the former did not use a multivariate analysis to fi nd the prognostic infl u-
ence of multifocality; in fact, when comparing the prognostic infl uence of multifo-
cality against other prognostic factors in a Cox multivariate analysis, multifocality 
lost its independent prognostic infl uence. Patients with multifocal disease often had 
more positive lymph nodes and larger tumors than patients with unifocal cancers: 
these two factors are known to be strong prognostic factors, and this can explain why 
multifocality appeared as a prognostic factor in the univariate analysis and why it 
had no signifi cant effect on overall survival in the Cox multivariate analysis. 

 Actually, on a more general level, multiple carcinomas have been repeatedly 
reported to carry a higher frequency of lymph node metastases and a less favorable 
patient outcome when compared with unifocal lesions; unfortunately, it is still 
unclear whether this difference refl ects a different biological behavior (which could 
be responsible for the multifocality as well) or merely larger tumor burden [ 13 ]. 

 Other studies led to depict a multifaceted scenario as far as outcome of multiple 
breast cancer is concerned. Litton [ 28 ] studied a subset of young women with breast 
cancer (<35 years old), and multifocality by itself did not prove to worsen the ini-
tially poor prognosis of young breast cancer patients. Multifocal disease was associ-
ated with an increase in the risk of death (hazard ratio, 1.57) and decrease in the risk 
of recurrence (hazard ratio, 0.87), but did not reach statistical signifi cance. 
Multifocality was instead statistically associated with an increase in the risk of death 
after recurrence (HR, 3.71). There were, however, statistically signifi cant differences 
when looking at specifi c biological features, including pathological tumor grade, 
hormone receptor status, DCIS, and oral contraceptive use. For those women who 
did recur a more aggressive systemic disease, a decreased response to systemic 
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therapies was hypothesized, and other biological factors or genetic profi ling that 
might help explain these differences beyond multifocality itself were claimed to play 
a role. 

 Similarly, Cabioglu [ 29 ] reported that no difference could be found between 
patients with unifocal or multiple breast cancer in terms of rates of systemic metas-
tases, local recurrences, and disease-free or overall survival when patients were 
tabulated according to the stage, but their fi ndings led the authors to conclude that 
breast tumors with multiple foci have a different biology, with an increased meta-
static potential to axillary lymph nodes, regardless of tumor size (that refl ects an 
advanced stage). 

 Theoretically, the difference in behavior may be a refl ection of either the 
increased intrinsic aggressiveness of multiple tumors or their larger tumor size, in 
keeping with a consistent biological relation between tumor burden and angiolym-
phatic dissemination. In fact, the prognostic relevance of the T category has been 
extensively established, but survival of patients with breast cancer depends on two 
different types of prognostic factors: tumor size as a marker of tumor biology (as a 
time-dependent phenomenon) and biological factors (i.e., histological grade, the 
estrogen and progesterone receptor status, as well as the number of mitotic fi gures 
per ten high-power fi elds), which represent tumor aggressiveness [ 30 ].  

2.5     Assessing Tumor Burden in Multiple Foci 

 Unfortunately, evaluating the burden of breast carcinomas is subject to several prob-
lems; routinely, the diameter of tumor nodules is used, primarily for practical rea-
sons, but tumors are in fact variably and irregularly shaped tridimensional objects, 
and therefore diameters inaccurately refl ect their real size. Nevertheless, the largest 
tumor diameter is currently used as an approximation (or surrogate) of the tumor 
volume for staging purposes in cases of unifocal breast carcinoma, and, in the same 
line, the American Joint Committee on Cancer and the International Union Against 
Cancer (AJCC/UICC) recommend the usage of the diameter of the largest tumor 
(only) also for the staging of multifocal/multicentric breast carcinomas [ 31 ]. 
Therefore, in practice, for the purpose of obtaining a simple and consistent mea-
surement, the actual tumor burden is underestimated because secondary tumor foci, 
which are often sizable, are not included [ 32 ]. 

 Andea et al. [ 32 ] hypothesized that the propensity of multifocal/multicentric 
tumors for metastasis is best described as a function of aggregate tumor size. This 
prompted the authors to explore the relation between tumor size and lymph node 
involvement in multifocal/multicentric tumors by using aggregate tumor size esti-
mates, and the fi ndings were used to investigate whether the current staging criteria 
optimally refl ect the metastatic behavior of multifocal breast carcinomas. 

 Two different methods for estimating tumor size in multifocal/multicentric car-
cinomas (i.e., diameter of the largest nodule and combined diameters) were used, 
and the two methods resulted in statistically signifi cant differences in both size and 
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T classifi cation distribution when compared with unifocal cases. Using the diameter 
of the largest nodule as a size estimate produced a lower mean tumor size for mul-
tifocal than for unifocal cases (2.53 vs. 3.47 cm, respectively;  P  = 0.026), and, con-
versely, combining the diameters of multifocal/multicentric tumors resulted in a 
larger mean tumor size compared with unifocal lesions (4.2 vs. 3.47 cm, respec-
tively;  P  = 0.003). Consequently, the multifocal tumors had a different distribution 
within T classifi cations depending on the method of tumor size estimation. 

 However, as far as the relation between T-stage and lymph node involvement is 
concerned, when utilizing the standard tumor size estimate, multifocal/multicentric 
tumors were demonstrated to have a signifi cantly higher incidence of axillary lymph 
node metastases than unifocal tumors of similar size (odds ratio, 2.8;  P  = 0.0001), 
but if combined diameters of all tumor nodules were utilized for the T-stage assess-
ment, the metastatic behavior of multifocal carcinomas was not signifi cantly differ-
ent from that of unifocal tumors (odds ratio, 1.4;  P  = 0.13). A multivariate logistic 
regression model was analyzed assessing the impact of multifocality versus unifo-
cality on lymph node status when controlling for tumor size, and results showed that 
multifocality did not signifi cantly infl uence lymph node status for the same tumor 
size when a combined diameter is used as a tumor size estimate. 

 In other words, results by Andea et al. [ 32 ] confi rmed that, within similar T clas-
sifi cation groups, the currently used measurement methods for staging multifocal 
carcinomas (diameter of the largest nodule) resulted in a signifi cantly higher inci-
dence of positive lymph node status in multiple tumors as compared to unifocal 
tumors; on the other hand, using the combined diameters as a size estimate resulted 
in frequencies of positive lymph nodes that did not signifi cantly differ from the 
unifocal control series. In particular, the most prominent change was observed in 
T1 classifi cation, where the incidence of lymph node positivity for multifocal and 
unifocal series became equal.  

2.6     Tumor Burden Versus Lymphatic Metastases 

 As the authors acknowledge, one potential criticism in this study is that it uses 
tumor diameters when, more likely, the propensity for metastases is a function of 
tumor volume or surface area. In multiple tumors, adding diameters of nodules in an 
attempt to estimate total tumor bulk would result in a consistent error because vol-
umes and areas are proportional to the third and second power of the diameter, 
respectively, and therefore summing diameter of tumor nodules would overestimate 
total tumor volume and, to a lesser extent, area. Thus, the same author pushed fur-
ther his research [ 13 ] and quantifi ed the relationship between tumor volume and 
area in multifocal tumors as compared to single cancers. The results confi rmed for-
mer fi ndings and showed that multifocal tumors have a signifi cantly larger aggre-
gate diameter, but they have a lower median volume and a similar distribution of 
tumor surface area than unifocal tumors of similar stage. So it was concluded that 
aggregate diameter measurements would actually overestimate the total volume of 
multiple tumors, but such an approach was sustained because, even though 
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summing diameters of multifocal tumors “overcorrects” for volume, this inadver-
tently accounts for their increased biological aggressiveness. 

 Based on these data, the authors suggested that alternative T classifi cation algo-
rithms for multiple breast carcinomas should be investigated; in their opinion the 
utilization of aggregate diameter measurements would allow multifocal/multicentric 
and unifocal tumors to be staged uniformly, although this may not refl ect accurately 
the total tumor burden. Alternatively, multiple tumors could be designated in a sepa-
rate T classifi cation to convey the increased risk for metastatic dissemination. 

 This sort of concern was addressed by the College of American Pathologists and 
in the protocol for the examination of specimens from patients with invasive carci-
noma of the breast, based on the 7th edition of the AJCC cancer staging manual 
[ 33 ], where the size of the largest invasive carcinoma is still used for T classifi cation 
but, if multiple carcinomas are present, the modifi er “m” is used in the assessment 
of the “T” stage to indicate that multiple foci are present. 

 Others have addressed the issue that, currently, in multicentric/multifocal disease 
the size of the tumor is assessed by measuring the largest tumor focus only. The aim 
of a study of Weissenbacher et al. [ 30 ] was to compare the prognosis of multicen-
tric/multifocal tumors with unifocal tumors with apparently identical tumor size 
according to TNM staging. A total of 288 pairs, each consisting of one patient with 
unifocal disease and one patient with multifocal or multicentric breast cancer, were 
created by matched-pair analysis to achieve statistical balance of the major prognos-
tic factors between both groups. All match criteria (tumor size, grading, and hor-
mone receptor status) were equally distributed in both sets, and, furthermore, no 
signifi cant difference was found between the two groups in terms of systemic ther-
apy and primary operation. The Cox multivariate regression analysis regarding 
breast cancer-specifi c survival and local or systemic relapse showed that multicen-
tricity/multifocality is a signifi cant independent predictor of reduced breast cancer- 
specifi c survival as well as of reduced relapse-free survival. Tumor size, grading, 
and lymph node status were also signifi cant independent predictors. As far as over-
all survival is concerned, hormonal therapy resulted in signifi cance ( P  = 0.002), 
while both chemotherapy and radiation showed no statistical signifi cance by multi-
variate analysis. Concerning disease recurrence, neither chemotherapy, hormonal 
therapy, nor radiation showed any signifi cance. 

 In order to explain their fi ndings, the authors stated that the currently used algo-
rithms, which employs the diameter of the largest nodule, result in the downplaying 
of multifocal breast carcinomas due to the underestimation of actual tumor size. 
They concluded that failure to measure the additional tumor burden provided by 
multiple small foci may underestimate the disease, and, besides, ignoring the con-
tribution of the smaller foci to the incidence of node positivity and survival may 
deny patients the opportunity of adjuvant therapies. 

 In summary it appears that, even when biases due to obsolete topographic defi ni-
tions are left aside, foreseeing multiple breast cancer prognosis still poses peculiar 
diffi culties that may reside in the incomplete adequacy of the presently used staging 
systems when applied to multiple disease and in the practice of neglecting smaller 
tumor foci, each one carrying its own biological features.  
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2.7     Future Perspectives: Biological Determinants 
of Aggressiveness 

 The sensitivity of some breast cancers to hormones and the possibility of reducing 
the growth of these tumors by removal of circulating estrogens have been known for 
over 100 years; quantitatively, it is reported that 50–80 % of breast cancers are ER 
positive, thus hormone therapy has possibly prognostic relevance for a signifi cant 
proportion of patients [ 34 ]. However, as mentioned above, in cases of multiple 
breast cancer current guidelines recommend that the highest T category tumor 
should be the one selected for classifi cation and staging. The reported grade corre-
sponds to the largest area of invasion and ER, PgR, and HER2 status are determined 
solely on the largest invasive carcinoma; biological tests on smaller invasive carci-
nomas are recommended only if these cancers are of different histological type or 
of higher grade [ 33 ]. Smaller cancers thus tend to be ignored, and homogeneity 
among different cancer foci is assumed. 

 Among papers that created grounds for such an attitude, a pilot study [ 34 ] involv-
ing 18 patients showed that ER status was the same in all foci of multiple breast 
cancers and therefore concluded that the current practice of establishing ER status 
in the primary focus is adequate in relation to hormone therapy. Yet, as acknowl-
edged by the authors themselves, the variability of ER and PgR status between 
individual foci in multiple breast cancer has not been widely studied, and, besides, 
it has been previously demonstrated by allelotyping that multiple breast lesions may 
exhibit distinct clonal patterns at the molecular level [ 35 ,  36 ]. 

 In fact, some authors described quite a different picture. Poulsen et al. [ 37 ] pre-
sented a case report in 1981 of a patient with two foci of invasive ductal breast 
cancer in the same breast: one tumor was ER positive, while the other was ER nega-
tive. Panahy et al. [ 38 ] studied hormone receptor distribution in normal and cancer-
ous breast tissue from nine patients harboring ER-positive cancers and identifi ed—in 
four patients—multifocal tumors with a varying phenotype for ER and PgR status; 
multiple tumors were reported to be somehow different in regard to histological 
criteria, too, but no further detail on the histology of foci was reported. In one case, 
all three cancer foci were ER positive/PgR positive, but other cases showed multifo-
cal tumors of more than one soluble receptor phenotype. One case had both 
ER-positive/PgR-positive and ER-positive/PgR-negative tumors, while another case 
had an ER-positive/PgR-negative and an ER-negative/PgR-positive tumor. A third 
instance combined two distinct ER-positive/PgR-positive tumors with, remarkably, 
a second phenotype (ER negative/PgR negative) on a further focus. Interestingly, in 
addition, variability was also seen in different regions of large tumors. 

 In order to analyze whether biological features that play a role in the choice of 
adjuvant treatment of breast cancer are differently expressed in distinct foci of inva-
sive multiple breast cancers with a single histological feature, we prospectively 
studied the expression of biological markers connected with adjuvant therapy and 
prognosis over a series of 113 cases [ 39 ]. In particular, ER and    PgR status, prolifera-
tive index Ki-67 (measured as Mib-1 staining), and the amplifi cation of HER2 were 
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assessed. The expression of all these features was prospectively assessed in each, 
and every tumor focus of multiple lesions and mismatches among foci were present 
in 4.4–18.6 % of cases, according to the parameter considered (see Table  2.1 ).

   In detail, mismatches in ER status were present in 4.4 % of cases: in two cases 
(1.7 %) out of fi ve, a smaller focus was positive and the main focus was negative, 
while in the remaining three cases (2.5 %), a smaller focus was negative and the 
main focus was positive. For PgR status, mismatches were present in 18 cases 
(15.9 %). For tumor grading, 21 (18.6 %) mismatches were found, with a minor 
focus displaying a higher grade in comparison to the main nodule in 3 cases (2.6 %). 
Proliferative index Ki-67 differed in 17 (15 %) cases, with eight cases (7 %) in 
which a “high” index was reported in minor foci only. A mismatch in HER2 ampli-
fi cation was present in 11 (9.7 %) cases showing amplifi cation exclusively in a 
minor focus in four cases (3.5 %). 

 The specifi c biological parameters were chosen because they are known as key 
elements in planning adjuvant treatments and their specifi c combination is an issue 
in the indication to hormonal therapy, chemotherapy, target therapy, or associated 
treatments [ 40 ,  41 ]; actually, in our series, extending the biological characterization 
to each tumor focus led to identifying heterogeneous characteristics over the foci 
and therefore to issuing different indications to adjuvant treatment in 14 (12.4 %) 
patients out of 113 as compared with what would have been prescribed if the status 
of the main focus only were taken into account.  

   Table 2.1    Overview of diverging expression of biological parameters among different foci in 113 
multiple breast cancers (modifi ed from Buggi et al. [ 39 ]   )   

 ER-positive  minor focus /
ER-negative  main focus  

 ER -negative minor focus /
ER-positive  main focus   Total 

 Divergent ER 
status 

  2  cases ( 1.7  %) 
 PgR-positive  minor focus /

PgR-negative  main focus  

  3  cases ( 2.5  %) 
 PgR-negative  minor focus /

PgR-positive  main focus  

  5  ( 4.4  %) 

 Divergent PgR 
status 

  10  cases ( 8.8  %) 
 High-grade  minor focus /

low-grade  main focus  

  8  cases ( 7.7  %) 
 Low-grade  minor focus /

high-grade  main focus  

  18  ( 15.9  %) 

 Divergent grading   3  cases ( 2.6  %)   18  cases ( 15,9  %)   21  ( 18.6  %) 
 “High” in  minor focus /

“low” in  main focus  
 “Low” in  minor focus /

“high” in  main focus  
 Divergent Ki-67 

staining 
  8  cases ( 7 % ) 
 Amplifi ed in  minor focus  
 Not amplifi ed in  main focus  

  9  cases ( 7.9  %) 
 Not amplifi ed in  minor focus  
 Amplifi ed in  main focus  

  17  ( 15  %) 

 Divergent HER2 
expression 

  4  cases ( 3.5  %)   7  cases ( 6.2  %)   11  ( 9.7  %) 

   ER  estrogen receptor,  PgR  progesterone receptor  
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2.8     Closing Remarks 

 Findings such as those reported in the experiences cited above need consistent con-
fi rmation, but nevertheless they allow to obtain some insight into biological hetero-
geneity among foci of multiple breast cancer. As previously claimed, the design of 
a rational therapeutic strategy for breast cancer should begin with a clear under-
standing of the biological basis of multicentricity and multifocality; given this, 
questions of defi nition and therapeutic strategy would follow logically [ 2 ]. 

 Future efforts will be required in order to confi rm preliminary data, but if present 
fi ndings will prove consistent, a thorough assessment over all tumor foci of biologi-
cal features that play a role in the adjuvant treatment decision-making process may 
eventually lead to optimal therapy tailoring.     
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    Abstract     The mammary gland is a complex organ necessary for providing nutrition 
and immunity to the newborn. Understanding the normal physiology and architecture 
of the mammary gland is essential because it is an anatomic site that is often diseased 
in humans. Cancer remains one of the dominant diseases detected in breast tissue. 
Worldwide, breast cancer is responsible for over 400,000 deaths annually. Despite 
our tremendous efforts, the molecular and cellular pathways to initiation and progres-
sion of breast cancer remain poorly understood. What has become increasingly clear 
is the microenvironment in the normal and malignant breast can have a profound 
infl uence on malignancy. While there are data that suggest that one component of the 
microenvironment, the immune system, protects against breast cancer, other data 
support a pathological role. In this review the authors take a comprehensive approach 
in defi ning this paradoxical, double-edged, role of the immune system.  

    Chapter 3   
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3.1         Introduction 

 The human breast is composed of a bilayered epithelial structure in which luminal 
epithelial cells are surrounded by basal myoepithelial cell layer. It is thought that the 
vast majority (~80 %) of breast cancers, whether ERα +  or ERα − , develops from 
luminal epithelium of the terminal duct lobular units (TDLUs) [ 1 – 3 ]. This hypoth-
esis is consistent with recent work from Keller and colleagues who showed that 
transformation of luminal EpCAM +  progenitors resulted in the formation of the 
most common forms of breast cancer including ERα +  or ERα −  with luminal- and 
basal-like characteristics, respectively [ 4 ]. In contrast, transformation of basal (i.e., 
myoepithelial) progenitors resulted in the development of rare metaplastic tumors 
with the claudin-low phenotype. Rather than sudden oncogenic transformation of 
the epithelium, the prevalent model of breast cancer development involves a pro-
gression through a continuum of tissue events that begin as benign breast lesions 
before eventually developing into malignancy [ 5 ]. This progressive model suggests 
that in situ carcinoma and subsequent breast cancer are preceded by at least two 
stages of proliferative changes: benign or usual proliferation and atypical ductal 
hyperplasia. This is based on molecular pathology studies that showed that benign 
proliferative disease and atypical ductal hyperplasia (ADH) are more similar to nor-
mal healthy tissue than to either in situ disease or invasive breast cancer, suggesting 
that unknown key molecular events occur with the development of in situ disease 
leading to abnormal cell phenotypes that look identical to invasive breast cancer but 
have not yet assumed the full malignant phenotype. With recent comparative 
genomics and expression profi ling studies, this model has been challenged in recent 
years. For example, Lopez-Garcia and colleagues suggest that only about 50 % of 
ERα +  breast cancers originate from low-grade benign lesions and that the other 
50 % originate as de novo cancers (assuming that in situ disease represents cancer), 
and moreover that the HER-2/neu and basal subtypes of breast cancer also develop 
as de novo cancers rather than progressing from low-grade proliferative intermedi-
ates, given that these breast cancer subtypes preferentially present as high-grade 
(III) lesions [ 6 ]. Whether forming from apparently normal epithelium as de novo 
cancers or progressing through precursor benign stages, it is clear that breast cancer 
encompasses a variety of diseases consisting of invasive tumors that exhibit a wide 
spectrum of histologic and molecular subtypes. This heterogeneity in subtypes sug-
gests that there are multiple steps along the pathway to malignancy. In recent years 
it has become clear that the nonneoplastic components of the tumor microenviron-
ment can play a signifi cant role in cancer initiation and progression. These compo-
nents include the extracellular matrix (ECM), cells that comprise the vasculature, 
stromal fi broblasts, and cells that comprise the immune system (myeloid and lym-
phoid). It was originally thought that many of these nonneoplastic microenviron-
mental components were passive enablers, but in recent years it has become clear 
that they can be disease “inducers” and “progressers” [ 7 ]. Thus, in addition to 
genetic abnormalities in the neoplastic cell itself, one could envision that the cells 
of the microenvironment, given their diversity, could be responsible for the hetero-
geneity of this frequent disease. In the present review, we focus on the role of the 
immune system in breast cancer initiation and progression.  
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3.2     Infl ammation in Initiation and Progression 
of Breast Cancer 

3.2.1     As a Mucosal Tissue, the Mammary Gland 
and the Immune System Are Naturally Linked 

 The mammary gland is a modifi ed sweat gland and unlike other prominent organs 
has no capsule or sheath. The gland lies in the superfi cial fascia, anterior to the tho-
rax, and the deeper aspects of the breast are separated from the pectoral muscles by 
the deep fascia. Mammary glands are ubiquitous throughout mammals. With the 
notable exception of the human and some ruminants, the glandular mass is typically 
present within subcutaneous fat and diffusely spread over the fascia of the pectoral 
muscles, making observation diffi cult. In many species, including the mouse, a use-
ful experimental model, the glandular mass can spread over the abdominal muscles 
as well as to the sides and back of the animal. The mammary glands of humans are 
contained entirely within the hemispheres of the pectoral fatty tissue. The amount 
of the glandular tissue is fairly homogenous, in contrast to the fatty tissue which is 
the primary determinant of breast size. 

 The mammary glands are accessory organs of the female reproductive system 
but are also present in males. Although varying in size and complexity throughout 
the life of an individual, the gland develops in the embryo and is fi rst observed in the 
fi rst trimester of life. The primary function of the gland is lactation, the secretion of 
milk for the nourishment of the infant; lactation also provide for maternal transfer 
of immune effectors such as immunoglobulins which confer immunity against 
pathogenic organisms. Each gland consists of 15–20 lobules of glandular tissue, 
each equipped with a lactiferous duct that extends to the nipples. Each lobule con-
sists of many alveoli, hollow cavities, which are several millimeters in thickness. 
Alveoli are saclike structures where milk is synthesized. The lumen of the alveolus 
is lined by a single layer of secretory epithelial cells, which is surrounded by con-
tractile myoepithelial cells, which aid in the injection of milk into the ducts. This 
bilayered structure is wrapped in a specialized extracellular matrix structure called 
the basement membrane, which separates the epithelial glandular tissue from the 
surrounding stroma, which is composed of stromal fi broblasts that support capillary 
beds which provide nutrients and oxygen to the tissue, adipocytes that provide lipids 
for milk production, and vasculature. Because milk production is only required at 
defi ned times during the life of the individual, the amount of glandular tissue can be 
highly variable being divided into four physiologic stages, resting, pregnant, lactat-
ing, and involution (pregnancy associated). 

 Although often overlooked, in addition to the glandular, stroma, and vascular 
cells, the mammary gland also contains a signifi cant number of cellular immune 
effectors making it similar to other secretory organs, such as the gastrointestinal 
tract. Integration of the immune system into the mammary gland is essential for at 
least three reasons. First, secretory IgA from breast milk exhibits specifi city for an 
array of common intestinal, as well as respiratory pathogens [ 8 ,  9 ]. The secretory 
antibodies in breast milk are thus highly targeted against infectious agents likely to 
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be encountered by the infant during its fi rst weeks of life when both innate and 
adaptive immunity remain underdeveloped. Secondly, the mucosal immunity (both 
antibody and T cells) protects the gland from spontaneous and breast-feeding- 
associated microbial (usually  S .  aureus ) colonization (i.e., mastitis) [ 10 ]. Lastly, 
there is some evidence suggesting that immune cells and effectors (e.g., cytokines, 
macrophages, neutrophils) are involved in mammary gland development, post-lac-
tational involution, and maintenance of glandular structure and function [ 11 – 13 ]. 
Dramatic changes in cellular composition occur in the mammary gland between 
stages of pregnancy, lactation, and post-lactation involution and menopause-associ-
ated involution. While the observation that immunodefi cient mice are able to 
develop mammary glands and to nurse mice suggests that the adaptive immune 
system is not absolutely required, the fact that immunodefi cient mice develop breast 
adenomas and cancers more frequently than their immunocompetent counterparts 
suggests that the immune system plays a critical neoplastic role [ 14 ]. 

 There are two immune compartments in mucosal tissues, an initiation compart-
ment and an effector compartment [ 11 ]. The initiation compartment consists of 
structures not unlike normal lymph nodes. There are also lymph node-like struc-
tures that are unique in some mucosal tissues, for example, the Peyer’s patches of 
the gastrointestinal (GI) tract [ 15 ]. Mammary glands are equipped with very few 
initiation sites but do have at least one internal lymph node and in most cases more 
than one. However, there is no data to support that the mammary gland contains 
unique immune-initiation structures, like the Peyer’s patches observed in the GI 
tract. There is however strong evidence of linkage between the GI mucosal and the 
mammary gland such that there may not be an evolutionary reason for formation of 
novel initiation sites in the breast, which by design, makes sense given that a pri-
mary role of the immune system in the gland is to confer immunity to gut pathogens 
to the newborn [ 16 ]. 

 The main effector compartment is the lamina propria (region immediately below 
the epithelial plane basement membrane) to which numerous T cells migrate after 
exposure in the initiation compartment [ 17 ]. Although there is an abundance of both 
T and B cells, T cells seem to be the predominant population in the lamina propria 
in higher organisms, including in the human [ 18 ]. Lamina propria T lymphocytes 
(LPLs) are much like conventional peripheral T cells in other immune tissues and 
organs [ 19 ,  20 ]. For example, they express the αβ-T cell receptor and typically 
either CD4 and/or CD8αβ. There are, however, notable differences as compared to 
peripheral T cells including oligoclonality and an enrichment in an antigen- 
experienced phenotype which suggest that the mucosa initiates and accumulates 
selected clones based on local antigen exposure [ 21 ,  22 ]. In addition to the lamina 
propria T cells, other T cells, known as intraepithelial lymphocytes (IELs), accumu-
late directly in the epithelial plane [ 21 ,  22 ]. IELs are more frequently CD8+ T cells 
that exhibit immediate cytolytic activity [ 23 ]. There are two mains categories of 
IELs, conventional CD4 or CD8αβ αβ-T cells and the CD8αα single-positive IELs. 
The latter CD8αα T cells are further divided based on expression of either the 
αβ-TCR or the γδ-TCR. Conventional CD4 or CD8αβ αβ-TCR T cells appear to be 
predominantly nonself-antigen-specifi c effector T cells primed within the mucosal 

K.L. Knutson and D.C. Radisky



47

node-like structures (e.g., Peyer’s patches). In contrast, CD8αα αβ-TCR and 
γδ-TCR T cells are self-antigen specifi c and can adopt either effector function, reg-
ulatory function, or tissue repair function [ 24 ,  25 ]. Although MHC-restricted (both 
conventional and nonconventional MHCs), studies have shown that CD8αα expres-
sion is not associated with costimulation or MHC class I-restriction, but rather is 
associated with T cell survival and mucosa-specifi c properties [ 25 ]. Studies have 
shown that CD8αα αβ-TCR and γδ-TCR T cells demonstrate minimal pathogen- 
specifi c activities. However, in  Toxoplasma gondii -infected mice, CD8αα+ T cells 
are required for CD8αβ αβ-TCR-dependent microbial clearance. Based on these 
and other results, there is some consensus that the primary responsibility of CD8αα 
T cells is in maintaining the integrity of the epithelial barrier by surveying for stress 
epithelium and controlling immune responses [ 26 ]. Indeed, this is further supported 
by the observation that CD8αα T cells arise very early in neonatal development and 
express autoreactive TCRs. Further research into the differentiation and selection of 
these autoreactive T cells has led to a revision in the thymic education theory to 
include “agonist selection” in addition to “negative selection.” Under the original 
theory, αβ-TCR T cells that migrated from the thymus into the periphery were thy-
mically selected based on moderate affi nity binding of the TCR to self-peptide and 
MHC, whereas T cells with a TCR that bind with high affi nity to self-peptide in 
association with MHC, as well as those that do not bind, are deleted. By contrast, 
CD8αα αβ-TCR T cells preferentially accumulate in mucosal tissues under condi-
tions in which conventional αβ-TCR T cells are deleted. Murine TCR transgenic 
mouse studies have shown that the accumulation of CD8αα αβ-TCR T cells is thy-
mus dependent and occurs most effectively in the presence of high-affi nity interac-
tions between the T cells and the agonistic peptide. While it is likely that the major 
role of T cells in the gland is protection against infection and to support develop-
ment and maintenance of an antibody response during lactation, T cells may also 
have a critical role in alveolar development. Studies done in IL-4/IL-13 double 
knockout mice reveal delayed alveolar development [ 27 ]. One caveat with interpre-
tation of these studies, however, is that it is also known that mammary gland epithe-
lial cells have a unique capability of producing both Th1 and Th2 cytokines [ 27 ]. 
Lastly, T cells (as well as B cells) in the gland are released into the milk during 
lactation in many species, including humans [ 18 ]. The role of the milk borne lym-
phocytes is unclear but it has been suggested that, like IgA, they may survive pas-
sage through the harsh gastric environment to confer immunity to the infant [ 18 ]. 

 The B cells that infi ltrate into the mucosa are the primary cells that release secre-
tory IgA an antibody that is unique compared to other antibody subsets, such as IgG, 
IgE, and IgM. Given the vast surface area constituted by the mucosal immune sys-
tems of the body, IgA is the most abundant antibody (75 % of the total Ig), and in 
humans between 3 and 5 g are produced daily [ 17 ]. IgA is secreted into the lumens of 
mucosal tissues typically as a dimer complexed to two additional proteins chains. 
One of these is the J chain (joining chain), which is a protein of molecular mass 
15 kDa that joins two IgA monomers [ 28 ]. Secretory IgA also contain a protein of a 
much larger molecular mass (70 kDa) called the secretory component that is pro-
duced by epithelial cells and originates from the poly-Ig receptor (130 kDa) that is 
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responsible for the uptake and transcellular transport of oligomeric (but not mono-
meric) IgA across the epithelial cells and into secretions such as tears, saliva, sweat, 
milk, and gut fl uid. Plasma B cells responsible for productions of secretory IgA are 
induced in the mucosa-associated lymphoid structures such as lymph nodes and 
Peyer’s patches of the gut. In addition to producing immunoglobulins, plasma B cells 
may also be involved in post-lactational involution, although their role is unclear [ 29 ]. 

 In addition to adaptive immune effectors, innate immune cells in the effector 
compartment have been studied extensively in mouse models as regulators of mam-
mary gland development and function [ 30 ]. Primary ductal branching is associated 
with the presence of eosinophils at TEBs, and increased numbers of mast cells are 
found at the points of TEB bifurcation; genetic depletion of either eosinophils or 
mast cells signifi cantly affects primary branching and ductal complexity [ 31 ,  32 ]. 
A role for immune cells in the secondary branching process is less clear, although 
macrophages are known to move along the length of the ducts in the developing 
gland [ 33 ], and macrophage-defi cient mice also have defective branching and 
exhibit unusual shaping of TEBs due to reduced collagen deposition [ 31 ,  34 ]. 

 At present, little is known of roles for innate immune effectors in lactation. 
Macrophage infi ltration into developing alveolar has been observed during pregnancy. 
Macrophages exclusively express the colony-stimulating factor receptor in the mam-
mary gland, and in CSF knockout mice, the absence of macrophages in the developing 
alveolar is associated with an inability of dams to nurse their pups [ 35 ]. Macrophages, 
particularly of the M2 wound repair phenotype, are also found in involuting glands 
where they are postulated to have a role in phagocytosing apoptotic cells [ 36 ].  

3.2.2     Is Chronic Infl ammation Linked to Breast Cancer 
Incidence or Disease Progression? 

 The fact that the immune system integrates into the normal healthy gland suggests 
that immunity or immune deregulation could have a role in breast cancer incidence 
or progression. Although a speculative idea, the concept is well supported by parallel 
observations in which deregulation of the immune system in the gut predisposes mice 
and humans to the development of colorectal cancer [ 37 ]. The role of the immune 
system in breast cancer in humans has been somewhat controversial. In mice, some 
breast cancers are promoted by the immune system [ 38 ]. Infl ammation results in 
oxidative damage that could initiate the carcinogenic process by causing inactivating 
mutations in tumor suppressor genes or posttranslational modifi cations in proteins 
involved in apoptosis and DNA repair [ 39 ]. Additionally, cytokines produced during 
the infl ammatory process directly promote growth and proliferation of cells, normal 
and malignant [ 40 ]. If such immune promotion occurs in humans, epidemiologic 
studies should show lower risk patterns in women who are immunosuppressed fol-
lowing transplant, who regularly use anti-infl ammatory agents (e.g., aspirin), or who 
have reduced systemic infl ammatory markers. In the transplant setting, solid organ 
recipients are treated long term with various immunosuppressive drugs that act to 
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prevent T and B cell-mediated immunity, such as tacrolimus, prednisone, and siroli-
mus. Stewart and colleagues reported in a study of 25,914 women that there were 86 
cases of breast cancer compared to an expected number of 114 cases. Relative risk in 
this transplant group at 1 year was 0.49 rising to 0.84 in subsequent years [ 41 ]. This 
reduction was recently confi rmed by Engels and colleagues who showed a relative 
risk of 0.84 in a larger cohort of 175,732 transplant patients [ 42 ]. Although these 
fi ndings would suggest a role for the immune system in promotion of breast cancer, 
other independent studies have not shown lower risk, although the cohorts in the lat-
ter studies are substantially smaller [ 43 – 45 ]. A case for an infl ammatory cause of 
breast cancer can also be made from population-based studies of the use of nonsteroi-
dal anti-infl ammatory drugs such as aspirin and ibuprofen. While these compounds 
are proposed to have several mechanisms of action, one major effect is blockade of 
cyclooxygenase-2, the enzyme responsible for catalyzing the production of infl am-
matory mediators such as prostaglandins [ 46 ]. Case–control studies have repeatedly 
shown that both aspirin and ibuprofen are associated with a reduced risk of breast 
cancer, and the analysis of each study in the context of this chapter is prohibitive. 
Algra and Rothwell recently published the results of their intensive study of the pub-
lished literature on the effects of aspirin use on long-term incidence [ 47 ]. Their 
pooled analysis reveals that aspirin use is associated with an overall 19 % reduction 
in breast cancer. Alternative to immune suppression, it is well known that the risk of 
developing breast cancer is 2.5-fold higher in women who exhibit chronic mastitis 
[ 48 ]. Although frank mastitis is not usually associated with the vast majority of breast 
cancer cases, the observations of increased incidence of breast cancer in immunosup-
pressed patients might suggest that infl ammation is subclinical, yet chronic. 

 The suggestion that initiation of breast cancer is mediated by subclinical infl am-
mation is largely supported by studies evaluating systemic markers of infl ammation 
such as the C-reactive protein (CRP). CRP is a protein found in the blood, the levels 
of which rise rapidly in response to infl ammation. Its physiological role is to bind to 
phosphocholine expressed on the surface of dead or dying cells in order to activate 
the complement system. CRP levels rise in the blood in response to IL-6 released 
during local infl ammatory processes, and thus it is not a disease-specifi c marker 
[ 49 ]. CRP protein levels in the blood are associated with a wide range of diseases, 
such as diabetes and atherosclerosis [ 50 ]. Siemes and colleagues reported, using 
data collected in the Rotterdam study, that in individuals with higher CRP levels, 
there was a 70 % increased risk of breast cancer incidence [ 51 ]. Excluding the fi rst 
5 years as a latency period, risk remained elevated, further supporting a role for 
infl ammation as causative. Despite these compelling, other studies of similar or 
greater sample size have failed to show strong correlations between CRP levels and 
incident breast cancer [ 52 ,  53 ]. 

 Genes encoding various cytokines related to infl ammation and immunity have 
been linked with the development of breast cancer. This includes the identifi cation 
several SNPs contained with various immune cytokines [ 54 – 56 ]. Dunning et al. 
found that the T+29C (Leu10Pro) signal peptide polymorphism embedded in the 
signal peptide region of TGF-β is associated with enhanced secretion [ 54 ]. 
Individuals with the homozygous ProPro phenotype have a modestly elevated risk 
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of developing breast cancer (RR ~1.21). While TGF-β is typically anti- infl ammatory, 
it is constitutively expressed in mucosal microenvironments to regulate immunity, 
particularly by mediating immunoglobulin class-switching to IgA. It is unlikely that 
TGF-β alone induces cancer, particularly because it is well known to block prolif-
eration. However, in the presence of other infl ammatory cytokines, it may drive 
pathogenesis. For example, our group has observed that immortalized breast epithe-
lial cells (e.g., MCF10) exposed to TGF-β and TNF-α undergo epithelial to mesen-
chymal transition and acquire a breast cancer stem cell phenotype with anchorage 
independent growth [ 57 ]. 

 The IL-12B gene encodes for IL-12 subunit p40. IL-12 p40 associates with IL-12 
subunit p35, to form the potent infl ammatory cytokine, IL-12, which is involved in 
activating cellular immunity. IL-12 production is highly restricted to dendritic cells 
and macrophages, both normal cellular components of mucosal immune systems. 
   Macrophages, recruited to the terminal end buds of the mammary gland, are essen-
tial to branching morphogenesis [ 58 ]. Although it remains unclear whether gland- 
associated macrophages secrete IL-12, a recent study from Kaarvatn showed that 
the rs3212227 SNP of IL-12b is associated with the development of breast cancer. 
At the genotype level, AA homozygosity portends a 68 % increase in risk of breast 
cancer incidence [ 55 ]. The A allele is a high producer of IL-12 p40 mRNA. It 
should also be noted that IL-12 p40 is also a subunit of the IL-23 cytokine. IL-23 is 
central to development of autoimmune disease and chronic infl ammation associated 
Th17 helper T cells [ 59 ]. As the name implies, a major cytokine produced by Th17 
T cell is IL-17. IL-17 refers to IL-17A, the namesake cytokine of a family of struc-
turally related cytokines, IL-17A-F. IL-17A is a well-studied cytokine and has a 
spectrum of proinfl ammatory activities. While essential to host defense, IL-17 is 
linked to a wide variety of infl ammatory conditions such as asthma, infl ammatory 
bowel disease, and rheumatoid arthritis [ 60 ]. While there is no evidence in case–
control studies that the cytokines IL-17A and IL-23 directly confer an elevated risk 
of breast cancer, various studies do provide indirect evidence. For example, obesity 
induces a chronic state of infl ammation and numerous studies show that obese 
women are at an increased risk for postmenopausal breast cancer [ 61 ,  62 ]. 
Interestingly, the IL-17/IL-23 axis is highly upregulated in obesity as shown by 
Sumarac-Dumanovic and others [ 61 ,  63 ]. Further supporting a link between IL-17A 
and breast cancer incidence, Wang showed that IL-17 SNPs are associated with a 
signifi cantly increased risk of breast cancer in a cohort of Han Chinese women [ 64 ]. 

 A completely different kind of infl ammation follows tumor development [ 65 ]. 
Rather than initiating malignant transformation, chronic infl ammation fosters and 
supports various cellular events resulting in induction and/or selection of aggressive 
cancer cells. A growing body of evidence has shown that cytokines released by the 
immune response either can directly alter tumor cell biology or can activate other 
cells in the tumor microenvironment such as tumor-associated macrophages, fi bro-
blasts, and vascular endothelial cells [ 66 ]. Alternatively, systemic infl ammation, 
regardless of its source, may promote the development of metastatic niches through-
out the body [ 67 ]. A potential role for infl ammation in disease progression has been 
established by several lines of investigation. In contrast to the weaker fi ndings with 
disease incidence, correlations between elevated CRP and disease progression are 
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fairly strong in both early and advanced disease [ 68 – 70 ]. In addition to CRP, reduced 
survival in breast cancer is also associated with elevated levels of another acute 
phase liver-derived protein, serum amyloid A (SAA) [ 70 ]. SAA is involved in extra-
cellular matrix degradation, cholesterol transport, and recruitment of leukocytes 
[ 71 ,  72 ]. Both CRP and SAA are released in response to IL-6 secretion by various 
immune effectors as well as tumor cells themselves. IL-6 is a pleiotropic cytokine 
that supports the development of both innate and adaptive immune responses and 
notably suppresses regulatory T cell development and fosters infl ammation- 
associated Th17 cell expansion [ 73 ]. Consistent with the CRP and SAA fi ndings, 
elevated levels of IL-6 are associated with poor outcomes in patients diagnosed with 
metastatic breast cancer [ 74 ,  75 ]. Although there are likely many factors regulating 
production of IL-6, levels appear strongly linked to the genetics of the individual. At 
the promoter position –174 of the IL-6 gene, a G to C variation is linked to reduced 
serum levels of IL-6 [ 76 ], and in two separate studies, G to C variation is associated 
with a better prognosis [ 77 ,  78 ]. 

 In summary, there is some support of the notion that chronic infl ammation in the 
mammary gland is involved in breast cancer development. It is largely accepted that 
the potential for infl ammation in the breast drives carcinogenesis given direct evi-
dence of a higher rate of cancer diagnoses in individuals with clinically recognizable 
mastitis. Unfortunately, no studies to the best of our knowledge have been reported 
which directly compare in either prospective study or case–control studies that smol-
dering subclinical infl ammation drives the development of neoplasia of the breast. In 
fact, primary early breast cancer removed from patients rarely show any evidence of 
signifi cant infl ammation [ 66 ]. The best evidence in our view is from the studies 
demonstrating reduced risk of breast cancer in the setting of immune suppression in 
the transplant and aspirin use settings. However, there are several other mechanisms 
that could explain the effects of drugs used in these settings. Furthermore, unlike for 
colorectal cancers, there is no appropriate animal model data to support the claim 
(including the cow, an animal which does not get breast cancer) [ 79 ]. Lastly, there is 
a possibility that simple evaluation of systemic markers of infl ammation may not 
reveal a role for the immune system and infl ammation in driving tumorigenesis. 
Although speculative, future studies evaluating modifi cations of the mucosal immune 
microenvironment may reveal patterns or abnormalities that may better defi ne a role 
for immunity and subclinical infl ammation in driving breast cancer initiation.   

3.3     The Tumor Immune Microenvironment 

3.3.1     The Role of Infi ltrating Immune Effectors in Disease 
Pathogenesis and Survival 

 Immunohistochemical and immunofl uorescent studies examining the infi ltration of 
various immune effectors into primary operable breast cancers have pointed to 
involvement of the immune system in the clinical course of established disease. 
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An authoritative overview of the multiple studies completed over the last decade has 
been recently summarized by Mohammed and colleagues [ 80 ]. Here, the focus is on 
immune cells that can have a pro-tumor phenotype. 

 The two immune effectors which appear to have the dominant pro-tumor impact 
on breast cancer are the macrophage and the regulatory T cell (Treg). Data for a pro-
tumor role for infi ltrating macrophages is strong and conclusive. Derived from blood 
monocytes, macrophages are specialized phagocytic immune effectors that have a 
broad role in both in innate and adaptive immune responses. The plastic nature of 
macrophages results in distinct phenotypes that are dependent on the microenviron-
ment in which they are localized [ 81 ]. Rather uniformly, macrophage infi ltration in 
breast cancer portends a poor outcome [ 82 ]. In tumors, macrophages are known to 
release a variety of mediators involved in angiogenesis and production of extracel-
lular matrices. Treg refers to a diverse group of either thymically derived or periph-
erally induced, suppressor CD4 or CD8 T cells that control peripheral activation and 
function of both self- and foreign-antigen reactive T cells [ 83 – 90 ]. Tregs infi ltrate 
into tumors and essentially behave as shields by suppressing T and B cell immune 
responses through a variety of mechanisms. Several studies show that elevated Tregs 
in the tumor are associated with poor survival in breast cancer [ 91 – 96 ]. 

 Some studies have suggested a role for cytotoxic T cells by associating CD8 
staining with disease-free and overall survival. Cytotoxic T cells are the primary 
cell type staining with CD8 antibodies. Cytotoxic T cells are crucial components of 
the tumor-specifi c adaptive immune response. CD8 T cells recognize tumor- 
associated antigens presented in the context of HLA-A, HLA-B, and HLA-C (major 
histocompatibility complex, MHC in mice) molecules. Ligation of the T cell recep-
tor by peptide-bound HLA leads to release of several toxic molecules associated 
with the induction of apoptosis in the target cells [ 97 ]. Strong associations of CD8 
T cell infi ltration with improved survival has been observed in several cancers such 
as ovarian and colorectal cancers [ 98 – 100 ]. The role of CD8 T cells in breast cancer 
pathogenesis appears to be complex and not easily resolvable. Recently, Mahmoud 
and colleagues showed that stromal, but not intratumoral, CD8 T cells were associ-
ated with improved survival among breast cancer patients [ 101 ]. However, other 
studies have failed to demonstrate such an association [ 102 ]. Other studies suggest 
a potential for CD8 T cells to be involved in increased tumor aggressiveness. For 
example, Matkowski found that CD8 T cell infi ltration was associated with poor 
survival and node-positive disease, albeit in a small group of 88 patients [ 103 ]. 
While murine data remains scarce, work from our group has suggested a role for 
CD8 T cells in both tumorigenesis and the genesis of breast cancer stem cells in the 
FBV/N-based neu-transgenic mouse model of breast cancer [ 104 ,  105 ]. Despite 
those fi ndings, mechanisms remain elusive. Further work is required to understand 
a potentially dual-role for CD8 T cells in breast cancer. Notwithstanding, it is nota-
ble from the studies described above that normal and malignant epithelium in the 
breast is associated with a complex immune microenvironment that could promote 
tumor initiation, growth, and metastasis under conditions which remain obscure. 
While there are likely to be multiple mechanisms involved in the pro-tumorigenic 
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activities of macrophages, Tregs, and possibly cytotoxic T cells, below we consider 
the possibility that one of the major mechanisms may be induction of epithelial to 
mesenchymal transition (EMT). This is considered, largely because the dominant 
pro-tumorigenic immune cells that populated the normal and malignant breast pro-
duce a number of factors (e.g., TNF-α, TGF-β, IL-6, and MMP-3) which are criti-
cally involved in the activation of EMT.  

3.3.2     Epithelial to Mesenchymal Transition 

 EMT is a cellular transdifferentiation process wherein epithelial cells take on the 
characteristics of mesenchymal cells, lose cell–cell interactions, alter cell–extracel-
lular matrix (ECM) interactions, acquire increased migratory capability, increased 
resistance to cell death, and substantially altered cellular metabolism. The EMT 
process has been most studied in the context of embryonic development, where it 
has been found to be essential for the development of many tissues and organs dur-
ing development [ 106 – 108 ]. In early developmental processes, EMT drives gastru-
lation, which leads to formation of mesoderm, as well as neural crest formation, 
which is responsible for the release of mesenchymal cells that migrate through the 
body, ultimately generating the vertebrate head and a wide variety of tissue types, 
including glial and neuronal cells, adrenal glandular tissues, melanocytes, and skel-
etal and connective tissues [ 107 ,  109 ]. EMT of embryonic endocardial cells into the 
endocardial cushion creates precursors of the valvular and septal structures [ 110 ]. 
When activated during development, EMT is a highly regulated process that follows 
a defi ned series of events controlled by signals from neighboring cells as well as 
soluble molecules [ 107 ]; this is necessary to retain the permeability function of the 
epithelial sheet from which the mesenchymal cells will emerge. First, where EMT 
occurs becomes specifi ed through identifi cation of the cells that will undergo EMT 
concomitant with a morphogenic rearrangement that moves those cells to the site of 
EMT. Following this, the interaction between epithelial cells and the basement 
membrane (BM) must become disrupted, through regulation of the integrins that 
mediate cell–BM contacts or through proteolytic degradation of the BM itself. 
Third, the cells undergoing EMT detach from the epithelial sheet so as to maintain 
overall epithelial tissue integrity, generally involving coordination of elongation of 
the cells undergoing EMT as they leave the epithelial sheet in combination with 
contraction of the remaining epithelial cells so as to close the new gap. After all this 
has occurred, the ingressed cells differentiate into the mesenchymal cellular pheno-
type. Thus, developmental EMT is much more than just the acquisition of motility 
but is a process involving the entire epithelial tissue. 

 While physiological EMT is largely viewed as driving developmental processes 
in the embryo, EMT has been implicated in postnatal mammary gland development. 
During puberty, the rudimentary mammary gland develops into the fat pad through 
extension and branching morphogenesis of the ductal tree [ 111 – 113 ]. This process 
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has been studied extensively using mouse models, which has revealed that matrix 
metalloproteinases (MMPs) are key mediators of the developmental processes. 
In the mouse mammary gland, ductal extension in the developing gland occurs at 
terminal end buds (TEBs), invasive structures that express high levels of EMT- 
associated transcription factors, including Snail and Twist [ 114 ], as well as matrix 
metalloproteinase-2 (MMP-2) and the membrane-spanning MMP-14 [ 115 ]. 
Development of the mammary ductal tree through branching morphogenesis occurs 
through primary branching or end bud bifurcation, and secondary branching, in 
which differentiated, ductal epithelium dedifferentiates, detaches from the adjacent 
epithelial cells, penetrates the basement membrane, and invades into the surround-
ing tissue. The key mediator of secondary branch formation is matrix metallopro-
teinase- 3 (MMP-3): transgenic mice lacking MMP-3 expression have signifi cantly 
reduced secondary branching, while the overexpression of MMP-3 leads to increased 
secondary branching and ductal complexity [ 115 ,  116 ]. Inhibition of retinoic acid 
signaling pathways, another key mediator of side branching, also increases MMP-3 
expression and also increases side branching [ 117 ]. As we will discuss below, 
MMP-3 has also emerged as a key inducer of EMT and activator of invasive, meta-
static behavior in the breast cancer context. 

 At the cellular level, the process of EMT is defi ned as the transdifferentiation of 
the epithelial phenotype. Epithelial cells are tightly interconnected by cell–cell 
junctions and are attached to the BM through specialized cell–ECM contacts. 
Whereas some cell rearrangement can occur in the context of tissue morphogenesis, 
movement of epithelial cells is generally constrained by cell–cell junctions to the 
epithelial sheet. One of the key components of epithelial junctions is E-cadherin, a 
transmembrane molecule that connects adjacent cells, and β-catenin, an intracellu-
lar molecule that is part of the protein complex that connects cadherins to the actin 
cytoskeleton. In addition to restraining epithelial cell movement, E-cadherin/
β -catenin complexes function to transmit information from the microenvironment 
to the cells as well as inhibit transition to the mesenchymal state [ 118 – 120 ]. 
Accordingly, reduced expression/function of E-cadherin is viewed as one of the key 
steps in completion of EMT. By contrast, cells which have fully acquired the mes-
enchymal phenotype lack cell–cell junctions and are capable of free movement in 
three dimensions, traveling along collagen strands and moving within the interstitial 
ECM. While cell–ECM contacts are still critical for mesenchymal cells, these con-
tacts become specialized for interaction with the components of the interstitial ECM 
[ 121 ]. During the EMT process most cell structures and functions are altered. In 
addition to the loss of cell–cell adhesion through downregulation of E-cadherin, 
there is upregulation of key transcription factors with the expression of associated 
mesenchymal genes, such as the cytoskeletal intermediate fi lament vimentin and the 
ECM molecules fi bronectin and collagen [ 122 ]. EMT is regulated by soluble growth 
factors or cytokines, including epidermal growth factor (EGF), hepatocyte growth 
factor (HGF), fi broblast growth factors (FGFs), and transforming growth factor 
(TGF)-β [ 123 ], as well as the composition and structure of the ECM components 
and ECM-remodeling matrix metalloproteinases (MMPs) [ 124 – 126 ].  
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3.3.3     Immune-Induced EMT in Cancer Progression 

 EMT in embryonic development generally occurs in an immunologically privileged 
setting with little or no infl ammatory responses. In the adult organism, transition 
between epithelial and mesenchymal cell types occurs under conditions in which 
the immune system can be highly activated, such as during wound healing, as well 
as during remodeling of tissues that develop postnatally, such as the mammary 
gland, and in the pathological context, such as infl ammation, fi brosis, or breast can-
cer development [ 127 ,  128 ]. By contrast to normal embryonic development, the 
disrupted, chaotic context present in developing or progressing breast cancers can 
stimulate EMT in a disorganized and cell-autonomous fashion, leading to disruption 
of epithelial integrity and disorganization of epithelial tissue as well as production 
of new mesenchymal cells which can perpetuate the disease process. Most impor-
tantly, activation of EMT in premalignant cells can confer the highly tumorigenic, 
malignant cancer stem cell (CSC) phenotype, producing cells which are highly 
metastatic, resistant to many chemotherapeutic treatments, and which possess the 
ability to reconstitute the entire tumor from only a few cells (or even a single cell). 

    TGF-β, the product of several subsets of infi ltrating immune cells (e.g., Tregs), 
is one of the most potent activators of EMT [ 129 ]. During gastrulation, EMT 
induced by TGF-β leads to the formation of the mesoderm. TGF-β is also impli-
cated in developmental EMT in the kidney, endocardial cushion, and subsequent 
atrioventricular valve formation [ 130 ]. Virtually all cell types are responsive to 
TGF-β, which regulates proliferation, migration, differentiation, and survival and, 
in cancer, can act either to suppress tumor growth or to activate tumor progression, 
depending upon cellular context [ 131 – 133 ]. Induction of EMT by TGF-β involves 
a combination of Smad-dependent and Smad-independent events on cell junction 
complexes [ 134 ]. While TGF-β is a central mediator of normal infl ammatory 
responses, its sustained expression stimulates fi brogenic processes and tumor pro-
motion. It could be speculated that poor outcomes associated with infi ltration of 
Tregs may in fact be due to direct actions of Treg-produced TGF-β on the tumor 
cells rather than on the infi ltrating immune effectors. The cooperation between 
TGF-β1 and other proinfl ammatory cytokines (e.g., TNF-α) produced in a chroni-
cally infl amed microenvironment by macrophages, CD8 T cells, and CD4 T cells 
activates autoregulatory loops which further reinforce the EMT program [ 57 ,  135 ]. 
In addition to providing TNF-α, macrophages may also contribute to EMT by pro-
viding MMP-3 [ 136 ]. MMP-3 induces EMT in both non-transformed and trans-
formed mammary epithelia through a cascade of events involving production of 
reactive oxygen species (also produced by macrophages) mediated by MMP-3- 
induced production of alternatively spliced forms of Rac1b [ 137 ]. 

 Several transcription factors have been identifi ed in EMT, involved either in tran-
scriptional inactivation of epithelial genes or activation of mesenchymal genes 
[ 122 ]. Among these, Snail has emerged as a central regulator of both developmental 
and pathological EMT [ 138 ]. Snail is critical for gastrulation in normal develop-
ment of mice; homozygous knockout of Snail is lethal as embryos fail to produce 
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mesoderm [ 139 ]. Snail has also been associated with pathological conditions, such 
as fi brosis and cancer, in which its detrimental role is determined by its ability to 
induce EMT-like processes. Snail has been found to directly suppress expression of 
E-cadherin, and other epithelial cell–cell adhesion molecules, and to promote 
expression of mesenchymal proteins, such as fi bronectin and MMP-9 [ 108 ]. Snail is 
expressed in premalignant breast epithelial cells and in fi broblasts associated with 
damaged or neoplastic tissues [ 140 ], and its increased expression is commonly 
observed in cultured cells treated with agents that stimulate the EMT program, for 
example, by treatment with TGF-β, interleukin 6, and growth factors such as EGF 
or FGF or by exposure to MMPs [ 57 ,  141 ,  142 ]. Expression of Snail is further regu-
lated by an integrated and complex signaling network at the transcriptional and 
posttranscriptional level that includes integrin-linked kinase (ILK), phosphati-
dylinositol 3-kinase (P13-K), mitogen-activated protein kinases (MAPKs), glyco-
gen synthase kinase 3-beta (GSK-3β), and NF-κB pathways. The increase of the 
transcription of Snail comes about through the direct binding of NF-κB to the Snail 
promoter [ 143 ], as well as activation of NF-κB by GSK-3β inhibition [ 134 ,  141 ]. 
Lastly, T cells and macrophages are the body’s major producers of IL-6, and it has 
been shown that ectopic expression of IL-6 in tumor cells can lead to expression of 
Twist, an EMT regulator and direct transcriptional repressor of E-cadherin [ 144 ].  

3.3.4     Immune-Induced EMT Can Lead to Cancer 
Stem Cell Phenotype 

 Activation of the EMT program in cancer cells facilitates tumor progression through 
several distinct mechanisms (a) EMT in the tumor cells can trigger invasive and 
anti-apoptotic mechanisms that drive cancer metastasis, (b) EMT can generate acti-
vated stromal cells that drive cancer progression through biochemical and structural 
alterations of the tumor microenvironment, and (c) EMT mediators can stimulate 
the increased malignancy associated with the CSC phenotype. 

 In normal tissues, stem cells are characterized as having low proliferative rates, 
existing as minority populations within tissues in defi ned tissue compartments, or 
niches, and having responses to extracellular stimuli that are distinct from those of 
the more differentiated cells within the organ [ 145 ]. Stem cells exhibit self-renewal 
and can divide symmetrically, to produce additional stem cells, or asymmetrically, 
to generate progenitor cells that can subsequently differentiate into the many differ-
ent cell types within the organ. More recently, cells with stem/progenitor character-
istics have been found to play critical roles in tumor formation and progression 
[ 146 ]. These CSCs were fi rst identifi ed in human acute myeloid leukemia [ 147 ], 
although subsequent studies have identifi ed CSCs in solid tumors, including breast, 
brain, colon, and pancreas (reviewed in [ 148 ]). The identifi cation of CSCs has 
resulted in increased efforts to identify treatments that selectively target this sub-
population of cells, as traditional treatments for breast cancer that target the bulk of 
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the tumor such as surgery, conventional chemotherapy, and radiation may be less 
effective toward the CSCs, due to their decreased proliferation rate and resistance to 
apoptosis [ 149 ]. While identifi cation of therapies that selectively target CSCs is a 
potentially important goal, a parallel and perhaps equally effective approach would 
be to target the mechanisms that generate and maintain the CSC population in 
tumors. A recent series of studies showed that induction of EMT in human or mouse 
mammary epithelial or epithelial tumor cells can directly result in the generation of 
CSCs [ 105 ,  150 ,  151 ]. Evaluation of such model systems provides an experimental 
platform to explore how to target EMT-induced CSC development. 

 Immune responses can eliminate premalignant and malignant cells in a process 
called immunosurveillance, which has been identifi ed as a key factor in reducing 
the earliest stages of tumor development [ 152 ]. However, aberrant activation of the 
immune system can also promote tumor development, as chronic activation of 
infl ammatory responses has been directly linked to development of cancer [ 153 , 
 154 ]. The interaction of tumors with the immune system progresses through an 
initial stage in which the immune system can effectively target and kill tumor cells, 
but as the tumor immune interaction evolves, tumors acquire the ability to evade 
immune targeting entirely, by becoming less immunogenic or more immune sup-
pressive [ 152 ,  155 ]. Evaluation of immunoediting in a mouse model of breast can-
cer relapse identifi ed EMT as a mechanism for escape from immunosurveillance, 
as well as activation of the CSC phenotype [ 156 ]. Transgenic mice that express the 
cell surface rat HER2/neu oncogene under control of the mouse mammary tumor 
virus (MMTV) promoter, which drives expression in mammary epithelial cells, 
develop tumors with a highly epithelial morphology; transplantation of these 
tumors into non-transgenic syngeneic mice stimulated a T cell-dependent rejection, 
followed by relapse of phenotypically mesenchymal tumors enriched in neu-nega-
tive variant cells [ 157 ,  158 ]. Activation of the EMT program led to downregulation 
of the epithelial-specifi c MMTV promoter and loss of expression of the neu onco-
gene; the resultant tumor was able to grow without provoking an immune reaction. 
Further studies identifi ed T cells of the CD8 subtype as required for outgrowth of 
the neu- negative mesenchymal variants [ 105 ], and the induction of EMT in the 
neu- expressing epithelial cells was associated with TGF-β and TNF-α signaling 
pathways [ 57 ]. Further evaluation of tumor cells isolated from relapsed mice dem-
onstrated that these tumors had adopted CSC characteristics, including altered cell 
surface marker profi les, enhanced mammosphere formation, and substantially 
increased tumorigenicity [ 105 ]. CD8-induced mesenchymal tumor cells also have 
elevated expression of drug transporters, DNA repair enzymes, and resistance to 
chemotherapy and radiation [ 57 ,  105 ].    Moreover, the neu-negative CSCs were fully 
capable of differentiating into epithelial cells; when neu-negative cells were 
injected into MMTV-HER2/neu mice (where selection against neu was absent) 
showed development of tumors with a predominantly epithelial phenotype associ-
ated the reacquisition of neu expression [ 105 ]. These studies suggest that migration 
or metastasis of CSCs to distant regions of the body may circumvent immunoedit-
ing processes.   
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3.4     Conclusions 

 Like the stromal and vascular system, the immune system is an integral component 
of the normal healthy mammary gland. When deregulated, however, the immune 
system could precipitate breast cancer and aid in its progression. While the mecha-
nisms by which the immune system fosters disease progression are unclear, EMT is 
a likely target given the abundance of immune effectors that induce and regulate 
EMT. Thus, it seems reasonable that future approaches to disease prevention and 
therapy include modulators of one or more targets along this pathway.     
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    Abstract     Remodelling of the extracellular matrix (ECM) is essential for develop-
ment, wound healing and normal organ homeostasis. The tight control of biochemi-
cal and biomechanical properties of the ECM and the ongoing remodelling of the 
ECM is critical in maintaining correct organ function. When this remodelling 
becomes excessive or uncontrolled, life-threatening pathological conditions such as 
cancer can result. In this chapter, we focus on the importance and complexity of 
cell–ECM interactions in determining correct cell behaviour under normal condi-
tions and what happens when it all goes wrong in situations of cancer. We discuss 
the pathogenesis of breast cancer initiation, progression and metastatic dissemina-
tion in the context of the ECM and illustrate how dynamic ECM remodelling con-
tributes to all of these stages. We discuss how improving our understanding of ECM 
remodelling in all stages of carcinogenesis is crucial for uncovering novel therapeu-
tic targets and treatment strategies for a disease which currently presents challeng-
ing obstacles with respect to clinical treatment.  

4.1         What Is the Extracellular Matrix? 

 The extracellular matrix (ECM) is defi ned as the diverse collection of biochemically 
distinct components including proteins, glycoproteins, proteoglycans and polysac-
charides that surrounds cells in all solid tissues. Each of these individual compo-
nents exhibits markedly different physical and biochemical properties and their 
exquisite networks of interaction are responsible for determining the structure and 
function of all organs in the body [ 1 – 3 ]. 

    Chapter 4   
 Remodelling of the Extracellular Matrix: 
Implications for Cancer 

             Thomas     R.     Cox     and     Janine     T.     Erler    

        T.  R.   Cox    •    J.  T.   Erler      (*) 
  Biotech Research and Innovation Centre (BRIC), University of Copenhagen , 
  Ole Maaløes Vej 5 ,  Copenhagen ,  Denmark   
 e-mail: janine.erler@bric.ku.dk  



66

 Historically, the ECM was thought to provide structural support to tissues by 
maintaining a complex insoluble scaffold, which is in turn responsible for defi ning 
the characteristic shape and dimensions of organs and tissues. The intricate inter-
locking mesh of fi brillar and non-fi brillar collagens, elastin fi bres, glycosaminoglycan- 
containing non-collagenous glycoproteins, hyaluronic acid and proteoglycans 
contributes most of the structural support provided by the ECM. Whilst the ECM 
indeed fulfi ls a primarily structural and hence physical role, two important consid-
erations are now widely accepted: fi rstly, that the matrix is far from static, instead 
being one of the most dynamic compartments of the body; and secondly, that the 
matrix plays an intricate role in providing contextual information responsible for 
controlling both individual and collective cell behaviour.  

4.2     Laying Down the ECM 

 Following intracellular synthesis, ECM components are secreted and incorporated 
into the surrounding environment that encompasses and supports the cells. The 
exquisite structure and hence function of the ECM manifests in the manner in which 
these individual ECM components are assembled. Because of their remarkable 
structural and biochemical diversity, and their functional versatility, the precise 
composition and organisation of the ECM lends itself to the generation of unique 
physical (i.e. rigidity, porosity, insolubility, topography); biochemical (i.e. composi-
tion, spatial ligand distribution); and biomechanical properties (i.e. stiffness, elas-
ticity, viscosity) that are essential for regulating cell behaviour. All of these 
properties are capable of exerting both positive and negative effects on cell behav-
iour, and together the complex summation of inputs is critical in determining the net 
result of environmental cues and leads to highly tuned properties of the ECM criti-
cal to supporting the diverse wealth of tissue architecture, integrity and function 
observed in the body [ 4 ]. 

 Structurally, the individual components of the ECM make up both the basement 
membrane (BM) (produced by epithelial, endothelial and stromal cells) and intersti-
tial matrix (produced primarily by stromal cells). BM is a highly specialised form 
of ECM, forming sheet-like structures, which are more compact and less porous 
than interstitial matrix and important in separating epithelium (or endothelium) 
from stroma. BM has a distinctive composition containing high amounts of type IV 
collagen, laminins, fi bronectin, heparan sulphate proteoglycans and linker proteins 
such as nidogen and entactin, which connect the collagens with other protein com-
ponents [ 5 ]. BMs play a key role in epithelial cell function, providing orientational 
cues that help establish and maintain apico-basal polarity and cellular differentia-
tion. In contrast, interstitial matrix is highly rich in fi brillar collagens, proteoglycans 
and various glycoproteins such as tenascin C, decorin, fi bromodulin, SPARC, lumi-
can, osteopontin and fi bronectin. The interstitial matrix is highly charged, hydrated 
and as a result provides a signifi cant contribution to the tensile strength of tissues 
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[ 4 ,  6 ,  7 ]. Although collagens are collectively the most abundant component of the 
ECM, the differential expression of individual subtypes as well as other ECM 
components underpins the specifi c functions of many organs and tissues.  

4.3     Functional Properties of the ECM 

 As we will explore throughout this chapter, the ECM serves many functions in addi-
tion to the classical role in providing structural support. Indeed macroscopically, the 
ECM physically segregates cells and organs, acting as a barrier, anchorage site, 
movement track for cells, but also as a protective cushion—for example, by regulat-
ing hydrostatic pressure within tissues and organs during exposure to deforming 
stresses. At a microscopic level, the precise organisation and orientation of ECM 
components creates a highly organised topology that contributes to the functional 
properties of the matrix [ 8 ,  9 ]. As we shall see in this chapter, through direct or 
indirect means, the ECM regulates almost all cellular behaviour and is indispens-
able for the major developmental processes [ 10 – 13 ]. Similarly, the dynamic nature 
and remodelling of the ECM (discussed later) is an equally important contributor to 
tissue function as the more static structural properties. At this microscopic level, the 
highly dynamic molecular network is capable of regulating cellular behaviour 
through modulation of, among other things, proliferation, cytoskeletal organisation, 
cellular differentiation and receptor signalling [ 8 ,  9 ]. Functionally discrete tissues 
and organs have markedly distinct biomechanical and biochemical properties that 
are critical to defi ning their precise structure and function, and which are subject to 
change during the course of development and more importantly, as we will discuss 
later, during pathogenesis [ 14 ].  

4.4     The Dynamic Nature of the ECM 

 More often than not, the ECM is wrongly viewed as a static structure that plays a 
predominantly scaffolding role in maintaining tissue morphology and changes only 
in response to growth or repair. In fact, the ECM is an essential part of the milieu of 
a cell that is surprisingly dynamic and versatile, and infl uences all fundamental 
aspects of cell biology [ 15 ]. The highly dynamic nature of the ECM means that it is 
constantly being remodelled at various stages of life, beginning during embryonic 
development and continuing postnatally. It is worth noting that, whilst the micro-
scopic matrix topology is determined by continuous dynamic ECM remodelling, 
often macroscopic topology remains mostly unchanged, i.e. except in pathological 
cases, tissues and organs rarely undergo changes in size, shape or organisation. An 
excellent exception to this rule, which will be discussed shortly, is the case of mam-
mary gland morphogenesis during involution. 
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 Important, the concept of “ECM dynamics” covers a broad range of activities, 
which may include changes in the absolute amount of ECM components, or indeed 
the relative amounts of ECM components, as a result of altered synthesis or degra-
dation. It is becoming increasingly important to distinguish between increased 
amounts and increased concentrations of an ECM component in disease progres-
sion. This was fi rst highlighted in a study by Cattell and co-workers [ 16 ]. In their 
study, aortic collagen and elastin concentrations increased with age, whereas the 
absolute amounts decreased. The authors attributed this discrepancy to the age- 
related differential loss (through the activity of matrix-degrading enzymes, dis-
cussed later) of other tissue components. Alternatively, and perhaps equally as 
important, the ECM may show no compositional change of its components at all, 
either absolute or relative, but instead, in such situations, “ECM dynamics” refers to 
how individual ECM components are laid down, cross-linked and spatially arranged 
together via covalent and non-covalent modifi cations (discussed below). Typically, 
a combination of both manifests, for example, in aged breast, there is reduced col-
lagen deposition and increased MMP activity over time [ 14 ]. However, this is, per-
haps counter-intuitively, accompanied by increases in tissue stiffness (i.e. loss of 
elasticity), and is most likely associated with a disproportionate increase in inap-
propriate posttranslational cross-linking and modifi cation of ECM proteins.  

4.5     Regulation of ECM Dynamics 

 A carefully controlled balance between matrix synthesis, secretion, modifi cation 
and enzymatic degradation regulates ECM dynamics. Such regulation is critically 
important during development and is primarily accomplished by controlling the 
expression or activities of both ECM components and remodelling enzymes at mul-
tiple levels, including transcriptional, translational and posttranslational [ 17 ,  18 ]. 

 ECM components are degraded by matrix-degrading enzymes, including hepa-
ranase, cathepsins, hyaluronidases, matriptases and various serine and threonine 
proteases [ 19 ] and the large superfamily of metzincins, including ADAMs, 
ADAMTSs and the matrix metalloproteinases (MMPs) and their inhibitors, tissue 
inhibitor of MMPs (TIMPs) [ 20 ]. Cleavage and covalent cross-linking of ECM 
components (posttranslational modifi cation) is also important in determining higher 
order structure of the ECM, its solubility and ability to be degraded. Such events are 
key to determining both physical and biomechanical properties of the ECM and will 
be discussed shortly. The tightly controlled ECM homeostasis is sensitive to altered 
expression of these proteases, which, if present over prolonged periods of time, will 
result in excessive ECM remodelling as is frequently observed in both fi brotic dis-
eases and cancer [ 6 ]. Changes in matrix homeostasis affect not only the biochemical 
properties of the matrix but also the resulting physical and biomechanical proper-
ties, both of which are crucial for development and correct tissue function.  
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4.6     Posttranslational Cross-Linking of the ECM 

 One of the major factors controlling the properties of the ECM is posttranslational 
modifi cation of the constituent components. One of the biggest posttranslational 
modifi cations of the interstitial matrix is cross-linking of collagens, which is critical in 
determining higher order collagen fi bre formation and ECM structure. Collagen 
cross-linking can occur in both a regulated and nonregulated manner, typically via 
enzyme-mediated or nonenzyme-mediated processes, respectively. Regulated col-
lagen cross-linking is almost exclusively mediated by lysyl oxidase (LOX) and 
LOX family members [ 6 ,  21 ,  22 ], and primarily occurs during developmental pro-
cesses and wound healing. The LOX family of secreted amine oxidases catalyses 
the cross-linking of collagens (and elastin) through oxidative deamination of lysine 
residues. The importance of correct LOX expression and the resulting collagen 
cross-linking is exemplifi ed by the fact that the LOX-knockout mouse dies at birth 
due to collapse of a lethally fragile diaphragm and cardiovascular system [ 23 ,  24 ]. 
The signifi cant importance of aberrant LOX family expression and activity in breast 
cancer is discussed later in the chapter. 

 Nonenzymatic collagen cross-linking typically occurs through glycation [ 25 ] 
and transglutamination [ 26 ,  27 ] or increased biglycan and proteoglycan levels [ 28 ]. 
In some cases, fructosylation will also lead to in vivo collagen cross-linking, 
although this is observed less frequently. Such collagen cross-linking acts to stiffen 
the ECM, although this process occurs much more slowly than its enzymatic alter-
native [ 29 ]. However, due to the remarkable longevity of ECM proteins in vivo, 
often measured in years as opposed to hours for intracellular proteins, glycation- 
mediated collagen cross-linking becomes important and is thought to play a key role 
in many age-associated diseases [ 30 – 34 ].  

4.7     The Importance of Correct Cell–ECM Interactions 

 The interaction of cells with their surrounding ECM is by no means a unidirectional 
process and the most prominent feature of cell–ECM interactions is that they are 
inherently reciprocal. Whilst the cells are continuously secreting, degrading, rearrang-
ing and realigning components of the ECM, resulting in changes in ECM properties, 
these changes are continuously feeding back onto the cell infl uencing the behaviour in 
a cyclical manner [ 6 ,  14 ]. Such reciprocal interaction leads to the establishment of a 
regulatory feedback mechanisms with cell behaviour controlling ECM dynamics and 
vice versa. Such an intimate relationship under normal conditions ultimately main-
tains correct tissue structure, function and behaviour allowing cells to adapt to ongo-
ing stresses imparted upon them [ 35 ]. However, when this delicate balance is upset, as 
in the case of many diseases, essential cellular functions become disrupted, signifi -
cantly altering the way in which cells can respond to their environment. Since cellular 
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responses are tissue and context dependent [ 36 ], understanding the complex processes 
surrounding ECM dynamics and the cues provided is key to determining how ECM 
changes control or infl uence cellular responses in disease.  

4.8     Biochemical Cues 

 Biochemical cues are typically provided by ECM composition, and the importance 
of correct ECM composition and organisation is apparent when we consider orien-
tational cues provided by the BM to cells. BMs are responsible for maintaining 
apico-basal polarity in epithelial cells and have organ-specifi c compositions. 
Changes in BM composition can lead to changes in the physical properties of the 
BM and hence to changes in cellular shape and behaviour, which, in turn are capa-
ble of driving proliferation and tumorigenesis through altered binding or spatial 
distribution of cell surface receptors [ 37 – 39 ]. Although for many years it was 
thought that loss of apico-basal polarity due to BM disruption was a secondary con-
sequence of oncogenic transformation, recent investigations of  Drosophila  mutants 
have shown that loss of polarity determinants might in fact act as a driver of tumori-
genesis [ 40 ]. As more than 80 % of human cancers, including breast, are derived 
from the epithelium, the contextual environmental components of tumour initiation 
and progression are becoming increasingly important in fi nding commonalities 
between seemingly distinct tumour types. 

 In addition to a precise composition of individual components, the ECM also 
sequesters and hence acts as a “local depot” for a wide range of growth factors and 
cytokines. As a consequence, the ECM can both induce and suppress signal trans-
duction cascades due to its highly charged nature (primarily due to the presence of 
polysaccharide modifi cations) affecting sequestration, release, diffusive capacity 
and availability of potent growth factors such as tissue growth factor-β (TGF-β), 
bone morphogenic proteins (BMPs), fi broblast growth factors (FGFs), Wnts and 
Hedgehogs. At the same time, when local changes in physiological conditions and/
or tissue injury occur, they trigger protease activities leading to rapid release of 
signalling molecules which in turn allows the swift and local growth factor- mediated 
activation of cellular functions without de novo synthesis.  

4.9     Biomechanical Cues 

 Arguably one of the most rapidly expanding areas of ECM biology is how the bio-
mechanical properties of the ECM, including properties such as ECM elasticity, 
contribute to development and disease [ 41 ,  42 ]. The biomechanical properties of the 
ECM are tightly controlled by the specifi c composition and concentration of matrix 
components and also by posttranslational modifi cations, such as glycosylation 
and cross-linking [ 5 ]. These biomechanical properties of the ECM regulate 
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mechanosensory pathways that prompt cells to detect and respond to changes in 
tissue stiffness. As a result, during the last two decades, mechanical forces have 
emerged as important regulators in the complex interplay between cells and their 
environment [ 43 ,  44 ] with many cellular processes including cell survival [ 45 ], cell 
fate determination, angiogenesis [ 46 ], differentiation and tissue function [ 47 – 49 ] 
depending on the correct adhesive geometry and stiffness of the matrix. 

 Recent research has also focused on how perturbations in ECM stiffness can 
affect the behaviour of tissue cells, and as such, the elasticity of the three- dimensional 
ECM is considered to be critical in determining how a cell senses and perceives 
external forces [ 50 ] and thus provides a major environmental cue that determines 
cellular behaviour [ 51 – 56 ]. For example, cell adhesion and organisation has been 
shown to depend strongly on matrix stiffness, with most cells cultured on soft elas-
tic substrates failing to form mature stress fi bres and adhesions whereas the same 
cells cultured on stiff plastic of glass substrates tend to develop large focal adhesion 
and stress fi bres [ 57 ]. This has been shown to act via mechanisms whereby increas-
ing matrix stiffness enhances Rho-generated cytoskeletal tension to promote focal 
adhesion (FA) assembly and increase growth factor-dependent ERK activation [ 50 ]. 
Furthermore, force has been shown to be crucial in the assembly and stabilisation of 
FAs as they build and remain stable under tension, but tend to disintegrate as force 
is reduced [ 58 ] which holds important implications for cell migration. 

 Gene expression studies of stem cells plated onto matrices of different compli-
ances have shown that matrix stiffness can drive cellular differentiation down alter-
native lineages [ 47 ]. Furthermore, microarray studies showed that gene expression 
changes that are typically associated with cardiovascular disease occur in cells of 
the ascending aorta in response to changes in arterial stiffening [ 59 ]. The range of 
stiffness typically encountered by cells in their physiological environments can vary 
from 100 Pa in the brain to 10 kPa in connective tissue and 50 kPa in the bone [ 43 , 
 60 ], but it is important to note that cellular response is not determined by single 
mechanosensor but by a much more complex network of integrated mechanosen-
sory elements.  

4.10     The Importance of the ECM in Development: 
Mammary Gland Morphogenesis 

 ECM composition, remodelling and ECM stiffness play a major role in coordinating 
the function of a variety of tissue types by providing informational cues to many cell 
types during embryogenesis and organism development. Two excellent examples of 
which are the development of branching morphogenesis in the lung and the mam-
mary gland, which we will discuss below. In both, studies have shown that the ECM 
is essential for the establishment and maintenance of tissue polarity and architecture 
leading to correct organ development. For example, β1-integrin interaction with the 
ECM is critical in maintaining tissue polarity in the mammary gland [ 61 ]. Branching 
morphogenesis of the mammary gland also occurs as a result of progressive end bud 
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enlargement and expansion to form the highly organised ductal tree. The ductal tree 
terminates in alveolar acini units (lobules), and these acini undergo further differen-
tiation to produce milk in the presence of lactogenic hormones [ 62 ]. 

 All of these processes are accompanied by signifi cant ECM remodelling and the 
topology and composition of the ECM supporting these ductal trees affect the 
matrix stiffness and play a key role in modulating cell differentiation [ 14 ]. Compliant 
basement membrane surrounds the mammary epithelial cell bilayer of the ductal 
tree and provides a mechanical shield that is crucial to maintain its functional integ-
rity [ 63 ,  64 ]. Adjacent to the basement membrane and surrounding the ductal tree is 
the stiffer intralobular matrix, which is comprised of structural proteins such as col-
lagen type I and III and elastin. This intralobular matrix, together with the basement 
membrane, defi nes the form and the function of the breast by providing both 
mechanical and biochemical cues. 

 Through attempting to understand the role of the ECM in development, it has 
allowed us to develop models to interrogate how pathological changes in the ECM 
promote disease progression. An excellent example of this phenomenon is the 
growth of mammary epithelial cells (MECs) within reconstituted BM (Matrigel). 
MECs grown in such 3D in vitro model systems form polarised mammary acini and 
differentiate in response to lactogenic hormones in a manner that recapitulates the 
in vivo situation mentioned above [ 65 ]. This provides an ideal platform to model 
how transformation events trigger cells to invade the acini lumen [ 66 ] as is typically 
seen during breast tumorigenesis. Importantly, these studies have also shown that 
oncogenic behaviour can be induced solely by increasing matrix stiffness [from 170 
Pascal’s (Pa) to 1,200 Pa], without altering biochemical composition. These 
mechanical alterations lead to an increase in cell growth and a compromised cell–
cell junction integrity that ultimately impedes lumen formation [ 50 ]. These studies 
have also shown that stiff matrices drive the formation of continuously growing, 
nonpolarised, disorganised and invasive colonies that lack detectable cell–cell junc-
tion proteins, exhibiting irregular cell shape, increased focal adhesion contacts and 
activated forms of the cell-adhesion proteins focal adhesion kinase (FAK), vinculin 
and p130CAS [ 50 ]. Conversely, soft compliant matrix leads to emerging but not 
mature focal contacts and maintenance of intact, organised acini structures [ 50 ]. 
Such examples of ECM infl uence on development can also be seen in ECM-vascular 
cell interactions for blood vessel formation [ 67 ] and ECM-neural cell interactions 
during brain development [ 68 ]. 

 Thus, the ECM dictates organ development through a variety of mechanisms, 
and these consistent, multiple regulatory mechanisms exist to ensure that ECM 
dynamics, collectively measured by its production, degradation and remodelling, 
are normal during organ development and function [ 18 ]. The disruption of these 
control mechanisms deregulates and disorganizes the ECM, leading to abnormal 
behaviours of cells and ultimately failure of organ homeostasis and function. 
However, despite the presence of multiple control mechanisms, ECM dynamics 
often become deregulated with age and under disease conditions. Consequently, 
ECM dynamics become abnormal as the amount, composition or topography of the 
ECM become aberrant, leading to disorganisation and changes in the essential 
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properties of the ECM. Altered ECM dynamics are one of the most ostensible clini-
cal outcomes in diseases such as tissue fi brosis and cancer [ 6 ].  

4.11     ECM Dynamics in Adult Mammary Gland Tissue 

 ECM remodelling and subsequent changes in ECM stiffness are critical in regulat-
ing and maintaining normal tissue homeostasis in the adult. For example, the estab-
lishment, and more importantly maintenance, of cell polarity relies on correct matrix 
stiffness [ 69 – 71 ]. Typically, ECM turnover is mostly observed during injury and 
repair (discussed later). However, matrix stiffness and ECM remodelling are also 
critical for the regulation of normal function of certain tissues, such as the mammary 
gland during pregnancy. Increases in ECM protein concentration, increased matrix 
cross-linking or parallel reorientation of matrix fi brils within a stromal matrix, can 
stiffen a tissue locally to alter cell growth or direct cell migration [ 14 ]. Interstitial 
fi brillar collagens are major contributors to this tissue stiffness as they are subjected 
to multiple posttranslational modifi cations including protease cleavage, glycosyl-
ation and cross-linking, which modify their tensile strength and stiffness. 

 ECM remodelling and stiffness also regulate cell behaviour and tissue phenotype 
in mammary gland remodelling after pregnancy (discussed above). During milk 
production, the matrix around the differentiated acini remains soft and compliant. 
However, extensive remodelling of the ECM occurs during gland involution. This 
dramatically alters the composition and architecture of the stroma and as a result 
drives epithelial cell proliferation and differentiation [ 72 ]. 

 Repair of damaged tissues is a fundamental biological process that is critically 
important for tissue and organism survival. Tissue damage can arise from mechani-
cal injury, infection and autoimmune reactions, which may be acute or chronic. 
Wound healing is critically dependent on ECM remodelling [ 73 ]. Disruption of the 
carefully controlled wound healing processes is often pathological leading to 
fi brotic disease. 

 During wound healing, the goal is to replace injured cells and tissue as swiftly as 
possible. Early in this process, infl ammatory mediators are released from the dam-
aged tissue that initiates the coagulation cascade; resulting in blood clot formation 
(primarily composed of fi brins) and early ECM deposition, typically type III colla-
gen [ 73 ,  74 ]. Fibroblasts transform into collagen secreting α-SMA+ myofi broblasts 
as they migrate into the wound and also produce MMPs, which degrade the basement 
membrane and allow immune cell infi ltration. Endothelial and epithelial cells also 
secrete MMPs together with many different growth factors, cytokines and chemo-
kines that recruit leukocytes and promote their proliferation. Granulation tissue is 
laid down but then, the initial, weaker collagen III-rich ECM is degraded and replaced 
with a stronger predominantly collagen I-rich ECM with activated myofi broblasts 
promoting wound contraction and epithelial/endothelial cell division and migration 
which regenerates the damaged tissue. In the case of scarring, excess collagen I-rich 
ECM is continuously deposited resulting in the remodelling and loss of normal tissue 
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[ 75 ] and is usually the result of a persistent irritation and a chronic infl ammatory 
response, often as a consequence of repeated injury. These chronic responses arise 
from sustained expression of proteolytic enzymes, fi brogenic cytokines, growth 
 factors and angiogenic factors [ 73 ] and deposition of ECM components.  

4.12     When It All Goes Wrong: The ECM and the Tumour 
Microenvironment 

 The concept that the local microenvironment plays an important role in regulating 
cell behaviour is far from a novel one and has always been the central theme in clas-
sical embryology for decades. However, only recently, and perhaps embarrassingly, 
has the importance become appreciated in the cancer biology fi eld [ 36 ,  76 ,  77 ]. 
Over two decades ago Dvorak published a paper in the New England Journal of 
Medicine proposing that tumours behaved as wounds that could not heal, highlight-
ing the striking similarity between the generation of tumour stroma and wound heal-
ing [ 78 ]. Over the past decade, solid tumours have increasingly been recognised as 
discrete “organs” that show a complexity that approaches and may even exceed that 
of normal healthy tissue [ 79 ] and the extrinsic contribution of the tumour microen-
vironment (TME) is now considered to be equally as important as tumour cell 
intrinsic factors. Indeed, despite being a disorganised organ, tumours still develop 
using many of the same cellular and developmental processes regulated by environ-
mental cues essential for organogenesis [ 4 ,  7 ,  80 ]. 

 Although tightly controlled during embryonic development and organ homeosta-
sis, the ECM is commonly deregulated and becomes disorganised in diseases such 
as cancer. Importantly, the unique characteristic properties of the ECM, responsible 
for providing the exquisite variation in tissues, also contribute enormous impor-
tance in the development of cancer. Abnormal ECM affects tumour progression 
directly by acting on tumour cells; for example, abnormal ECM dynamics can com-
promise basement membrane as a physical barrier and promote epithelial–mesen-
chymal transition, which together can facilitate tissue invasion by cancer cells [ 81 , 
 82 ]. Abnormal ECM can also affect tumorigenesis indirectly by deregulating the 
behaviour of stromal cells, in turn facilitating tumour-associated angiogenesis and 
infl ammation leading to the generation of the TME. With this in mind, it is impor-
tant to emphasise that solid tumours comprise not only the malignant cancer cells 
but also several other non-malignant cell types which are equally as important and 
together constitute the stromal tissue including fi broblasts [ 83 ], also often referred 
to as cancer-associated fi broblasts (CAFs); resident non-malignant epithelial cells; 
pericytes; myofi broblasts; vascular and lymphovascular endothelial cells; and infi l-
trating cells of the immune system, myeloid-derived suppressor cells (MDSCs) 
[ 84 ], tumour-associated macrophages (TAMs) and MAST cells. 

 These stromal-derived cells act to stimulate tumour cell proliferation and inva-
sion via the secretion of high amounts of ECM components such as collagen types 
I, II, III, V and IX [ 85 ,  86 ] and tenascin C (TNC) [ 87 ] as well as both paracrine and 
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autocrine growth factors, along with the secretion of matrix remodelling enzymes, 
such as urokinase plasminogen activator (uPA), cathepsins B and D [ 88 ], MMP2 
and MMP9 [ 89 ], tryptases and chymases [ 90 ]. Indeed, increased ECM deposition is 
a classical hallmark of breast cancer formation and progression [ 91 ], and breast 
tumours (as well as many other solid tumours) are initially detected as a palpable 
stiffening of the local tissue. As such, several approaches such as magnetic reso-
nance and ultrasound elastography have been developed to exploit this characteris-
tic and enhance cancer detection [ 92 ,  93 ]. 

 All together, the tumour stroma acts to contribute to the altered ECM microenvi-
ronment, providing additional oncogenic signals that can lead to an acceleration of 
cancer progression [ 83 ]. Unfortunately, a more detailed discussion of the contribu-
tion of the diverse stromal cells to tumour progression is beyond the scope of this 
chapter. However, in the context of cancer, it is exciting to note that the therapeutic 
disruption of these microenvironmental, ECM-derived cues, provided by stromal 
cells cues could retard breast tumour growth and prove to be a promising strategy in 
diffi cult to treat cancer subtypes. 

 Classically, the majority of work has aimed to determine how cellular compo-
nents of the TME initiate and promote cancer development [ 94 ]. However, recent 
progress has also highlighted the signifi cant importance of the noncellular compo-
nents of the niche, namely the ECM and ECM dynamics, during cancer progression 
[ 50 ,  95 – 97 ]. It is important to remember that the vastly diverse properties of the 
ECM are not independent; rather, they are intertwined. For example, biochemical 
changes in ECM composition under pathological conditions also lead to changes in 
ECM biomechanical properties and other physical ECM properties, which combine 
to exert effects on the cells interaction with the ECM.  

4.13     Deregulated ECM Dynamics Play a Critical Role 
in Infl uencing the Tumour Microenvironment 

 Tumour development is a complex, dynamic and progressive process that involves 
both cellular and environmental cues, and now it is clear that the ECM is much more 
than a passive bystander in regulating cellular behaviour and phenotype during 
development and in particular during the progression of cancers. Instead there is a 
network of bidirectional, dynamic and intricately complex interactions between the 
cells and the ECM that is regulated by both tumour and non-malignant stromal 
cells. Non- malignant cells of stromal tissue are capable of producing a unique 
microenvironment that can modify the neoplastic properties of the tumour cells. In 
turn, during the course of multistep tumorigenesis, the tumour cells contribute to the 
generation and modifi cation of the local microenvironment to further enhance their 
survival thereby creating a positive tumourigenic feedback loop. Therefore, the 
TME is a dynamic network that includes the cancer cells and the stromal tissue, as 
well as the all-surrounding ECM, and it has been proposed that, once established, 
tumours should be considered functionally discrete organs [ 36 ]. 
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 In addition to changes in its biochemical properties (compositional makeup), the 
architecture and other physical properties of tumour-associated ECM are funda-
mentally different from that of the normal tissue ECM. For example, rather than 
relaxed non-orientated fi brils, the collagen I in breast tumours is often highly lin-
earised and either orientated adjacent to the epithelium or projecting perpendicu-
larly into the tissue at the invasive front of the tumour [ 96 ,  98 ]. Such ECM 
organisation is a classic representation of metastatic dissemination, and often, trans-
formed mammary epithelial cells are found on bundles of linear collagen fi bres 
adjacent to blood vessels [ 99 ]. Consistent with this, intravital imaging has shown 
tumour cells are capable of travelling along these realigned collagen fi bres to facili-
tate invasion through tissue and extravasation into the bloodstream [ 100 ]. These 
changes are also refl ected in the biomechanical properties, where reports have dem-
onstrated that tumour stroma is typically signifi cantly stiffer than normal stroma 
(~400 Pa compared with 150 Pa) [ 8 ,  14 ,  96 ]. More recently however, increased 
matrix stiffness and ECM remodelling has been shown to occur in premalignant 
tissue and signifi cantly contribute to malignant transformation in the breast (~350 Pa 
vs. 150 Pa) [ 96 ]. In this case it has been shown that part of this increase can be 
attributed to excess activities of lysyl oxidase (LOX), which cross-links collagen 
fi bres and other ECM components [ 101 ]. Indeed such upregulation of LOX has 
been seen in several cancers including breast, head and neck and colorectal and is 
seen as a poor prognostic marker [ 95 ,  102 – 104 ]. Importantly, a study using mouse 
genetics has shown that overexpression of LOX increases ECM stiffness and pro-
motes tumour cell invasion and progression. In contrast, inhibition of LOX reduces 
tissue fi brosis and tumour incidence in the  Neu  breast cancer model [ 96 ]. Together 
these data demonstrate that deregulation of collagen cross-linking and ECM stiff-
ness is more than just a secondary outcome but instead plays a causative role in 
breast cancer pathogenesis. Interestingly though, the same study showed that over-
expression of LOX alone is insuffi cient to cause tumours to form suggesting that 
deregulation of ECM remodelling is a co-conspirator rather than a primary inducer 
of tumorigenesis in the breast [ 6 ]. 

 A large majority of increased tumour and adjacent tissue stiffness also occurs in 
part as a result of increased ECM deposition, as well as from increased ECM remod-
elling. The deposition of type I collagen and fi bronectin are the most common and 
abundant ECM components deposited in cancer [ 105 ]. This predominantly results 
from desmoplasia; the uncontrolled fi brosis driven by signals from the primary 
tumour and mediated by myofi broblasts. Desmoplasia results in a pervasive dense 
fi brous tissue which typically surrounds the tumour and increases local tissue stiff-
ness and is generally only associated with malignant tumours as it is rarely observed 
in benign tumours [ 14 ]. The mechanisms and key players implicated in tumour-
associated fi brosis are much the same as pathological fi brosis. For example, CCL2, 
CXC4, CCR2, CCR7, TGFβ, CTGF and IL-6 have all been reported to play a role 
in tumour progression and its associated fi brosis [ 106 – 110 ]. 

 Remodelling of the basement membrane (BM) is also commonly associated with 
cancer and, moreover, malignant progression and metastatic dissemination. 
Disruption of the BM abrogates apico-basal polarity and also allows tumour cells to 
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escape the primary tumour. Similarly, many other ECM components and their 
receptors such as heparin sulphate proteoglycans and CD44 that facilitate growth 
factor signalling are frequently overproduced in cancer [ 111 – 113 ].  

4.14     Disrupting ECM Dynamics and Turnover 

 ECM dynamics play a critical role in tumour progression, and a careful balance of 
matrix remodelling enzymes governs this, and indeed expression of many of these 
ECM remodelling enzymes is often deregulated in human cancers. Lysyl oxidases, 
heparanases, 6- O -sulfatases, cysteine cathepsins, urokinase and most notable, the 
MMPs are frequently overexpressed in breast and other cancers [ 114 ,  115 ]. LOX (as 
mentioned above) is required to cross-link newly synthesised collagen and its expres-
sion/activity is elevated in response to increased collagen deposition. Elevated LOX 
and LOX-Like (LOXL) family member expression is signifi cantly correlated with 
metastasis and decreased survival in cancer patients and mouse models of breast 
cancer [ 95 ,  116 ]. Increased LOX activity results in increased matrix stiffness and 
ECM remodelling in premalignant tissue [ 96 ] and has been shown to increase the 
invasiveness of many cancer cell types [ 95 ,  117 ,  118 ]. Whilst the exact mechanisms 
by which this occurs remain to be elucidated, it is thought to occur through increased 
cell- matrix adhesion, increased matrix stiffness and integrin activation leading to 
increased SRC and focal adhesion kinase (FAK) activation [ 95 ,  102 ,  103 ,  119 ,  120 ]. 
In particular, the increase in collagen deposition and subsequently matrix stiffness in 
and around tumours leads to increased integrin clustering [ 50 ,  121 ] resulting in an 
enhancement of mechanotransduction into the cell via ERK–ROCK signalling, con-
sequently promoting cell survival, proliferation and migration. Interestingly, work 
by Samuel et al. [ 35 ] has also shown that constitutive ROCK activation in skin leads 
to elevated tissue stiffness via upregulated collagen deposition resulting in increased 
tumour number, growth and progression in the K14-ROCK:ER mouse. Finally, 
increased collagen cross-linking and ECM stiffness as a result of LOX overexpres-
sion also promotes focal adhesion assembly and ERK and PI3 kinase signalling and 
facilitates  Neu -mediated oncogenic transformation [ 96 ]. Thus it still remains unclear 
whether ROCK signalling drives, or is as a consequence of aberrant ECM dynamics, 
but importantly both are inexplicably linked in ECM-mediated tumour progression. 

 A distinct but closely related member of the lysyl oxidase family is the so-called 
lysyl oxidase-like 2 (LOXL2). Whilst possessing a conserved catalytic domain, lead-
ing to a proposed similar function of ECM cross-linking to that of LOX, the presence 
of multiple scavenger receptor cysteine-rich (SRCR) domains in the N-terminal are 
thought to tailor LOXL2-specifi c protein–protein interactions. As such, this second 
family member has recently become the focus of increased research activity, and 
upregulation of LOXL2 has been observed in a number of human cancers including 
breast [ 116 ,  118 ,  122 – 129 ]. In humans, LOXL2 expression has been shown to be 
closely associated with regions of collagenous ECM, activated fi broblasts, tumour–
stroma boundaries and tumour-associated vasculature [ 122 ]. 
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 In particular, high LOXL2 expression is associated with a more aggressive phe-
notype in breast cancer and has also been correlated with metastasis and the reduced 
survival of patients with estrogen receptor (ER)-negative breast cancer [ 116 ]. Whilst 
the precise mechanisms are not clear, most reports suggest that increased LOXL2 
expression leads to tumour progression and metastasis, through promoting tumour 
cell invasion via the remodelling of the tumour microenvironment. LOXL2 activity 
has also been shown to regulate the expression of claudin 1 (CLDN1) and lethal 
giant larvae homologue 2 (LGL2), which are genes that encode components of tight 
junctions and cell polarity complexes, respectively [ 124 ]. In breast cancer, secreted 
LOXL2 has been shown to drive breast cancer invasion and has also been associated 
with the activation of tissue inhibitor of metalloproteinases 1 (TIMP1) and MMP9 
[ 116 ,  122 ,  125 ]. Such dynamic ECM remodelling is likely to increase integrin acti-
vation and subsequent intracellular signalling involving mediators such as focal 
adhesion kinase (FAK) and MAPK67. Importantly, Akiri et al. [ 130 ] showed that 
upregulation of LOXL2 in non-invasive breast cancer cells implanted orthotopically 
in nude mice induced fi brotic foci formation and increased the invasiveness of these 
cells. As well as affecting tumour cells directly, LOXL2 has been shown to be 
upregulated in tumours as a result of hypoxia, leading to increases in ECM cross-
linking and stiffening which leads to sprouting angiogenesis and vascularisation of 
the tumour [ 131 ]. Importantly, the inhibition of secreted LOXL2 and LOX for that 
matter leads to the signifi cant reduction in breast tumour progression in both xeno-
graft and transgenic mouse models [ 95 ,  96 ,  122 ,  127 ]. 

 At this point, it is especially interesting to note the control the ECM may exert 
over tumour cells. Elegant studies have shown that cells with a tumorigenic geno-
type can become phenotypically normal if the environmental context is appropri-
ately manipulated, and there is increasing evidence that it might be possible to 
restore aggressive breast cancer cell lines to a near-normal phenotype by manipulat-
ing environmental cues and simultaneously inhibiting multiple signalling pathways 
[ 36 ]. Thus, oncogenic transformation is by no means the be-all and end-all of 
tumour progression and as mentioned previously, the ECM may be critical in deter-
mining the penetrance of oncogenic transformations. One could propose the theory 
that the ECM and in particular ECM dynamics may cause irreversible changes to 
the normal cellular niche which at a pivotal point switch it from a tumour- suppressing 
to tumour-promoting environment.  

4.15     The ECM in Metastatic Dissemination 
and Colonisation: The Century Old Seed and Soil 
Hypothesis 

 Even with the wealth of information available to us, it remains unclear as to why 
some solid tumours preferentially metastasise to a particular organ and others 
exhibit different or lesser degrees of specifi city. For example, prostate cancer will, 
in most cases, exhibit metastasis specifi cally to the bone [ 132 ], whereas breast 
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cancer will metastasise to bone, liver, lung and brain and colorectal predominantly 
to liver. One of the current bottlenecks in understanding this is due to the fact that 
metastasis as a process is inherently diffi cult to observe and study, since macro- 
metastases are the clinical end point of the process. In the 1920s, Ewing [ 133 ] made 
the proposal that when a solid tumour metastasises, the fi nal resting organ is deter-
mined as a function of mechanical and anatomical features of the vascular system. 
Whilst the anatomy of the circulatory and lymphatic systems certainly helps to 
explain the delivery of tumour cells to distant organs, it cannot, in reality, fully 
account for the site-specifi c bias of some tumours. Instead, it appears that the suc-
cessful colonisation of macro-metastases is dependent on a receptive microenviron-
ment and that the mere entry into and exit of tumour cells from the circulation is not 
enough to give rise to clinically detectable metastases. It has been estimated from 
experimental models that there is somewhere in the region of one million cells per 
gram of solid tumour tissue released on a daily basis [ 134 ]. These enormous num-
bers of cells circulate the body and lodge in various organs, yet only a miniscule 
percentage of these cells will propagate into overt metastases. The conclusion is that 
one of the defi ning steps in tumour metastasis, is the ability of the lodging tumour 
cells to successfully colonise either the same and perhaps more frighteningly, seem-
ingly distinct organs with which they have previously had no connection. It is with-
out doubt that oncogenic transformation is considered the most important event in 
initiation of tumorigenesis, however, it is not suffi cient for metastatic competence, 
as has been evidenced by many in vivo models of oncogene-driven tumorigenesis 
that fail to show establishment of distant metastases [ 135 ], or indeed the fact that in 
some patients disseminated tumour cells are detectable, yet overt metastases fail to 
form [ 136 ]. Thus this model assumes that tumour cells do not solely dictate their 
own fate, but that presence of a hospitable microenvironment is essential—not just 
permissive—for disseminating tumour cells to spawn a secondary tumour growth. 

 Over a century ago in 1889, the English surgeon Stephen Paget [ 137 ] fi rst pro-
posed the “seed and soil” hypothesis to explain the seemingly predictable spread of 
solid tumours. By analysing autopsy records of 735 cases of advanced breast cancer, 
Paget discovered predictable patterns of bone and visceral metastasis. He intro-
duced the concept of a receptive milieu and his hypothesis put forth that for a tumour 
cell (seed) to grow it requires the appropriate local microenvironment (soil). Seminal 
work by Fidler and colleagues [ 138 ,  139 ] to support this showed that although cir-
culating tumour cells are found in the tumour vasculature of multiple organs, they 
do not give rise to metastatic disease; however, other selective sites consistently 
develop metastatic tumour deposits and as such these sites must be more conducive 
to tumour cell colonisation. More recently, exciting work has been published by 
Cox et al. [ 140 ] in which the authors present critical evidence linking tissue fi brosis 
to enhanced metastasis at secondary organs. The authors show that fi brotic ECM 
remodelling in organs, independent of primary tumours, is capable of generating 
pro-metastatic milieu within tissues that subsequently enhances tumour cell coloni-
zation and outgrowth. This work elegantly highlights how ECM remodelling is 
important in regulating tumour cell ability to colonise secondary organs.  
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4.16     ECM Dynamics and the Pre-metastatic Niche 

 Perhaps one of the most frightening concepts of metastasis is that some solid 
tumours appear capable of actively appropriating distant secondary sites in advance 
of their arrival [ 6 ,  141 – 143 ]. The idea that tumours are capable of predefi ning future 
sites of metastasis is both exciting and terrifying as we try to understand the dynamic 
networks associated with solid tumour metastasis. Exactly how a tumour cell can 
alter the distant metastatic microenvironment is of great importance and will unlock 
novel strategies for successfully targeting these processes. 

 In 2002, a paper published by Hiratsuka [ 144 ] and colleagues reignited an interest 
in the metastatic milieu of primary tumours and that of tumour cells at metastatic 
sites. In this paper, they presented compelling evidence in support of Paget’s original 
“seed and soil” hypothesis showing that primary tumours are capable of appropriat-
ing secondary sites in advance of tumour cell arrival by modulating the local environ-
ment. A paper closely followed this in 2005 by Kaplan et al. in which they coined the 
term “pre-metastatic niche” [ 145 ,  146 ]. The authors showed that deposition of fi bro-
nectin and recruitment of VEGF receptor 1 +  hematopoietic progenitor cells to these 
sites of future metastasis was critical for tumour cell colonisation. In 2009, Erler and 
colleagues published a paper showing for the fi rst time that ECM remodelling was 
critical to the generation of the pre-metastatic niche in breast cancer metastasis [ 117 ], 
reaffi rming the notion that the ECM is a pivotal player in metastatic dissemination. 
The authors showed that as in the case of the primary tumour microenvironment, 
LOX activities are upregulated at pre-metastatic sites [ 117 ], resulting in increased 
ECM dynamics and leading to the recruitment of host immune cells and further 
remodelling the ECM thus facilitating colonisation of circulating mammary carci-
noma cells. Fibronectin deposition is a critical factor in the regulation of the forma-
tion of the pre-metastatic niches, and fi bronectin matrices have been shown to provide 
specifi c microenvironments for the regulation of LOX catalytic activity [ 147 ]. 
Recently, Yaqoob et al. have shown the expression of neuropilin- 1 (NRP-1) promotes 
integrin-dependent fi bronectin fi bril assembly promoting matrix stiffness and tumour 
growth [ 148 ]. Therefore it is likely that the initial deposition of fi bronectin and the 
function of LOX during pre-metastatic niche formation generates an ECM which 
acts to facilitate the recruitment of bone-marrow-derived cells and other mesenchy-
mal cells to create permissive niches for circulating tumour cell colonisation. 

 The contribution of other ECM components to pre-metastatic niche formation has 
also been highlighted in other studies where hyaluronan (an anionic, nonsulfated gly-
cosaminoglycan) and its receptor CD44 facilitate CXCR4/CXCL12 signalling essen-
tial for tumour cell homing to the lung and bone marrow [ 149 – 151 ]. Further still, the 
role of ECM engagement of the tumour cells at the pre-metastatic niche has been 
further underlined in more recent studies by Oskarsson et al. [ 87 ] and O’Connell et al. 
[ 152 ] in which they demonstrated that TNC engages the Notch and Wnt signalling 
pathways to support the colonisation of initiating breast cancer cells during the estab-
lishment of lung metastases. They further went on to show that interference with 
cancer cell-derived TNC production results in suppression of the survival and 
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expansion of micrometastatic colonies. Similar work has also recently shown that 
periostin exerts similar effects acting as a key component in metastatic niches for 
tumour-initiating cells invading into the lungs [ 153 ]. In fact, both tenascin C and peri-
ostin have been shown to bind tightly to one another, with periostin further binding 
collagen I and fi bronectin anchoring them both to these more ubiquitous ECM com-
ponents [ 154 ,  155 ]. 

 During the generation of the pre-metastatic niche, factors produced by dissemi-
nated tumour cells, trapped in the peripheral organs, or even released from the pri-
mary tumour itself serve to downregulate fi bulin 5 (FBLN5), a 66 kDa glycoprotein 
that belongs to the group of modulators of cell–ECM interactions known as the 
matricellular proteins. These matricellular proteins are essential for the formation of 
elastic fi bres. Møller and collaborators [ 156 ] demonstrated that FBLN5 expression 
in fi broblasts suppresses metastasis formation by inhibition of the production of 
MMP9 and by reducing the invasive behaviour of fi broblasts at metastatic sites. 
Therefore, the downregulation of FBLN5 in stromal fi broblasts driven by tumour- 
derived factors results in the upregulation of MMP9, ECM remodelling and inva-
sion of fi broblasts facilitating tumour cell metastatic colonisation. 

 However it is defi ned, the fact remains that the TME undergoes extensive changes 
during the establishment, evolution and progression of metastases and that this is a 
major factor in the determination of the survival and growth of disseminated tumour 
cells at potential metastatic sites. As such, the underlying message regarding the 
metastatic and pre-metastatic niche is that all of these events lead towards the cre-
ation of a fertile milieu within which tumour cells can develop metastases.  

4.17     Infl uence of the Tumour Microenvironment 
on Response to Therapy 

 The importance of the ECM in the tumour context is becoming increasingly clear 
from the results of clinical drug trials, in which compounds show antitumour activ-
ity in vitro, but subsequently fail to show effi cacy in a clinical setting. It is becoming 
increasingly accepted that the response of cancer cells to drugs is determined in part 
by the 3D TME. Importantly, the precise location of a cell within a tumour may also 
be an important contributing factor. It has been shown that the ECM-mediated 
organisational cues can act as survival signals, as is seen in the case of breast carci-
noma studies, in which upregulated expression of β4 integrin suppresses apoptosis 
by inducing Nek activity [ 157 ]. Similarly, upregulated expression of drug transport-
ers such as P-glycoprotein, which is observed in 3D but not 2D culture conditions, 
might explain apparent drug resistance [ 158 ]. Furthermore, recent reports demon-
strating that stromal cells or stromal cell-derived matrix can modulate the responses 
of tumour cells to chemotherapeutic agents also underscore the importance of con-
sidering the role of the TME in drug discovery and drug sensitivity testing [ 159 ].  
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4.18     Targeting the Tumour Microenvironment, Clinical 
Implications and Perspective 

 The unravelling of the relationships between tumour cells and their microenviron-
ment represents an important issue for the development of new therapeutic agents 
that can fi ght both initiation and recurrence of cancer. An important area of research 
is the targeting of ECM remodelling enzymes to disrupt aberrant ECM dynamics 
and this is becoming an increasingly attractive therapeutic approach for preventing 
cancer progression. However, this is not always straightforward. For example, 
although there is much evidence that MMPs play multiple roles in metastases, clini-
cal trials with MMP inhibitors have failed to show signifi cant effi cacy because they 
failed to increase survival rates in patients, prompting a re-examination of MMP 
function and its complex roles [ 160 ]. This has largely been due to unexpected nor-
mal tissue toxicities and confl icting roles in both promoting and reducing metastatic 
dissemination and a lack of robust preclinical models. In addition, most MMP 
inhibitors are not specifi c and, more importantly, MMPs are implicated in a wide 
variety of functions both pro- and antitumorigenic. Finally, there is thought to be 
functional redundancy between MMP family members. Although a new generation 
of highly specifi c MMP inhibitors and other inhibitors of matrix-degrading prote-
ases hold promise [ 161 ], targeting the specifi c enzymes involved in ECM remodel-
ling whilst avoiding unwanted side effects currently remains challenging. 

 Conversely, targeting enzymes that play a role in increasing matrix stiffness 
might be a more successful approach. Indeed, inhibiting LOX or LOXL2 should 
decrease tissue desmoplasia and tumour incidence [ 101 ,  162 ]. Inhibition of LOX 
reduces primary tumour growth and mechanotransduction in the mammary epithe-
lium [ 96 ]. Furthermore, LOX inhibition prevents the formation of invasive branch-
ing structures of breast cancer cells in collagen in vitro, the invasion of tumours in 
vivo, and abrogates immune cell recruitment and the establishment of pre- metastatic 
niches and consequently metastases in vivo [ 95 ,  117 ]. Indeed, LOX seems an excel-
lent therapeutic target and inhibitors are now in development for use in the clinic. 

 In terms of the LOX family member LOXL2, therapeutic development is rapidly 
progressing. Work by Barker et al. showed that inhibition of LOXL2 catalytic activ-
ity demonstrated a marked reduction in metastatic spread of primary breast tumours 
[ 116 ]. Consistent with this, Barry-Hamilton et al. [ 122 ] showed that mammary 
tumours treated with a LOXL2-specifi c monoclonal antibody (AB0023) were sig-
nifi cantly smaller, demonstrated a signifi cant reduction in activated fi broblasts and 
growth factor signalling usually present in activated stroma and also displayed less 
cross-linked collagenous matrix. Most importantly, treatment with AB0023 was 
able to reduce metastatic burden in mammary and ovarian metastatic mouse models. 
As a therapeutic, LOXL2 is a highly attractive target which should have relatively 
few deleterious side effects owing to the very low expression levels of LOXL2 in 
normal tissues [ 163 ]. As such, a humanised version (AB0024) has recently cleared 
phase I and entered phase II clinical trials. 
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 These data on LOX and LOXL2 support the idea that antagonising matrix modi-
fi cations is a promising therapeutic cancer prevention strategy [ 101 ]. However, 
although LOX/LOXL2 are encouraging targets, lessons from the clinic have taught 
us that targeting a single molecule in a disease network often results in “network 
compensation” and subsequent drug resistance. The TME contains many overlap-
ping mechanisms that help to maintain its functional disorder; therefore, there is a 
need to better understand where key individual and collective players sit in cellular 
networks, how these nodes respond to the dynamics of the network and, more 
importantly, how environmental cues modulate these signalling networks. Such 
studies will provide insight into the most effective drug combination therapies and 
timing of treatments, and these network biology studies can only be done through 
extensive, multidisciplinary collaborative modelling of tissue disease [ 164 ,  165 ]. 
Similarly, a greater understanding of ECM dynamics as a driver of tumorigenesis 
will pave the way to the targeting of both tumour and its environment and as such 
may offer new insights into combinatorial drug treatment.  

4.19     Concluding Remarks 

 First and foremost, it is essential to reiterate the notion that cancers are highly het-
erogeneous and that the TME is mechanically and biologically active, and perhaps, 
more importantly, dynamic, as is highlighted by the fact that it is continuously and 
progressively remodelled [ 166 ]. Thus, abnormal changes in the amount and compo-
sition of ECM components can greatly alter ECM biochemical properties, disrupt-
ing and deregulating cell behaviour and potentiating the oncogenic effects of various 
growth factor signalling pathways during malignant transformation. The lynchpin 
of the model is that both intrinsic properties of metastatic cells (i.e. the genetic and 
epigenetic alterations) and the extrinsic properties of the tumour microenvironment 
are important in determining disease progression. 

 The tight control of ECM production, turnover and remodelling, and the result-
ing biomechanical properties, allows for correct organism development, wound 
healing and normal tissue homeostasis. When matrix homeostasis is perturbed, 
aberrant ECM can contribute to pathological conditions, including fi brotic disease, 
tumour progression and metastasis. Such changes can result from excessive deposi-
tion of ECM components in response to chronic chemokine, cytokine and growth 
factor signalling or unbalanced ECM dynamics. A fundamentally important area of 
future cancer research will be understanding how ECM composition and topogra-
phy are maintained and how their deregulation infl uences cancer progression. Such 
work holds the promise for developing new therapeutic interventions against abnor-
mal ECM in a multitude of pathological conditions, including cancer. Indeed, fur-
ther studies on the mechanisms of the crosstalk between tumour cells and the TME 
will allow a better understanding of the nature of these interactions and will help 
determine the roles of these cells from the TME in cancer progression and metasta-
sis formation. 
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 The hope is that targeting and monitoring ECM abnormalities associated with 
pathological conditions will soon become standard clinical practice. The challenge 
remains to identify effective ways to spatially and temporally monitor ECM changes 
at both the biochemical and biomechanical levels in a non-invasive and quantitative 
manner. Researchers should always be aware that both cells and their surrounding 
matrix together make up tissues and organs, and that the issue to address—espe-
cially in the case of cancer—is that of complex tissue diseases in which all compo-
nents should be studied simultaneously.     
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    Abstract     Breast cancer is one of the most common cancers identifi ed among 
women worldwide. It is a heterogeneous disease, with each sub-disease displaying 
unique clinical and histopathologic characteristics. Based on genomic analysis and 
gene expression profi ling, breast cancer has been classifi ed into several distinct sub-
groups. Estrogen receptor (ER)-positive breast cancers can be treated with antiestro-
gen drugs such as tamoxifen, and human epidermal growth factor receptor 2 
(HER2)-positive breast cancers can be treated with HER2-targeted drugs such as 
trastuzumab. Because of the low expression of ER and HER2, patients with basal-
like breast cancer cannot benefi t from these targeted therapies. Thus, to identify and 
validate pivotal theranostic biomarkers for basal-like breast cancer is of paramount 
importance. This chapter describes the molecular and histological features of 
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basal-like breast cancer as well as the differences between basal-like breast cancer 
and the other breast cancer subtypes. It presents current progress in identifying the 
biomarkers for basal-like breast cancer. It concludes with a description of the current 
therapeutic strategies to treat basal-like breast cancer and argues that inhibition of basal-
like tumor-associated signaling pathways, in conjunction with standard therapies, may 
enhance the treatment effi cacy.  

5.1         Introduction 

 Breast cancer, the most common cancer among women, is a heterogeneous disease 
that consists of diverse disease subtypes that each has prognostic and predictive 
value. High-throughput screening technologies—in particular microarray analysis—
has classifi ed breast cancer into fi ve major biologically distinct intrinsic subtypes: 
luminal A, luminal B, HER2-overexpressing, normal-like, and basal-like [ 1 ,  2 ]. 
Luminal A tumors typically express ER and have a low-grade histology. Luminal 
B-type tumors tend to have lower ER expression and a higher grade histology com-
pared to luminal A. HER2 +  tumors are characterized by the amplifi cation of the 
HER2 gene and have high-grade histology, and basal-like breast cancers express 
undetectable or low levels of ER, PR, and HER2 and have high-grade histology. 

 Based on the expression of various receptors in breast cancer cells, therapy is 
selected for individual patients. ER-positive or progesterone receptor (PR)-positive 
tumors can be treated with endocrine therapy, whereas tumors that have HER2 gene 
amplifi cation may be targeted with antibodies (such as trastuzumab) or small mol-
ecule tyrosine kinase inhibitors (such as lapatinib). These targeted therapies have 
dramatically changed the outcome of patients with ER-positive and/or HER2-
positive breast cancer. However, there still remains a daunting challenge to develop 
targeted therapies against highly invasive, metastatic ER-negative/HER2-negative 
“basal-like” breast cancers as effective as those against other subtypes of breast 
cancer.  

5.2     What Is Basal-Like Breast Cancer? 

 Basal-like tumors account for about 15–20 % of all invasive breast cancers and are 
usually associated with younger patient age and high histologic grade. They display 
a specifi c pattern of distant metastasis, a high recurrence rate, short recurrence- free 
survival, and poor outcome. Basal-like tumors are more prevalent among premeno-
pausal African American women than in postmenopausal African American women 
and non-African American women of any age [ 3 ,  4 ]. To date, there is no internation-
ally accepted defi nition for basal-like cancers for use in  clinical classifi cation or 
research [ 5 ]. Some have used microarray-based gene expression profi ling to defi ne 
basal-like breast cancers, whereas others have used immunohistochemical markers. 
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Basal-like breast cancers derived their name from the fi nding that these tumors 
express the genes usually found in basal/myoepithelial cells of the normal breast. In 
the 1980s, it was found that a small subgroup of breast cancers, similar to normal 
myoepithelial (basal) epithelium, expressed high-molecular- weight basal cytokera-
tins [ 6 – 9 ]. Cytokeratins are proteins of the intermediate fi lament family, usually 
found in the cytoplasmic cytoskeleton of epithelial tissue. In the mammary gland, 
myoepithelial cells usually express high-molecular-weight cytokeratins 5/6, 14, and 
17, whereas luminal cells usually express low-molecular- weight cytokeratins 8 and 
18 [ 10 ]; however, expression of basal cytokeratins are not restricted to myoepithe-
lial cells. 

 Immunohistochemical markers that have been proposed to defi ne basal-like breast 
cancer include ER − , PR − , HER2 − , the epidermal growth factor receptor (EGFR), the 
receptor tyrosine kinase c-Kit, P-cadherin, and cytokeratin 5/6 [ 11 – 15 ]. Compared 
with the triple-negative defi nition (ER − , PR − , HER2 − ), inclusion of additional bio-
markers such as EGFR not only provides a more specifi c identifi cation of basal-like 
breast cancer as defi ned by gene expression profi ling analysis, but also better strati-
fi es breast cancer survival among triple-negative breast cancer patients. However, 
there is a lack of a consensus defi nition of basal-like breast cancer to date. 

 Basal-like breast cancers are well known to have aggressive clinical features, 
poor prognosis and lower survival rates [ 16 ,  17 ], and tend to metastasize to the brain 
and lung, while luminal subtypes tend to metastasize to the bone [ 18 ,  19 ]. However, 
it is important to mention here that basal-like breast cancer is likely to be a hetero-
geneous group of tumors that may have unique outcomes, based on the differential 
gene expression profi les of basal-like cases in the hierarchical clustering analysis 
and characterization of basal-like tumors by different immunohistochemical bio-
marker panels [ 20 ,  21 ]. Interestingly, compared with other subtypes, basal-like 
tumors are more likely to present as interval breast cancers (i.e., tumors that develop 
between scheduled mammography screenings) [ 22 ,  23 ], probably as a result of their 
high proliferation rate [ 14 ,  15 ]. The majority of basal-like tumors are ductal and are 
occasionally tubular, mixed, metaplastic, or medullary cancers [ 5 ]. Microarray- 
based comparative genomic hybridization (CGH) has demonstrated that basal-like 
tumors have the highest frequency of DNA losses and gains compared with other 
subtypes, suggesting a genomic instability [ 24 ,  25 ]. Notably, the basal-like tumors 
were relatively enriched for low-level copy number gains and losses, while high- 
level amplifi cation at any locus was infrequent in these tumors [ 25 ]. Similarly, 
genome-wide single nucleotide polymorphism arrays have shown the highest over-
all rate of loss of heterozygosity in basal-like tumors [ 26 ]. Basal-like breast cancers 
have more frequent TP53 mutations, a higher mitotic index, greater nuclear pleo-
morphism, and higher grade [ 4 ,  27 ]. They also contain geographic areas of necrosis, 
pushing borders of invasion, and a stromal lymphocytic response [ 14 ]. 

 There is controversy with regard to the true origin of basal-like breast tumors. 
Although gene expression profi ling studies have demonstrated a basal-like genotype 
in these breast cancers, accumulating evidence argues against a myoepithelial origin. 
Livasy et al. found that in basal-like breast cancers, the frequency of expression of 
myoepithelial markers SMA, p63, and CD10 is low, and cytokeratin 8/18, a marker 
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typically expressed in the luminal epithelial cells of the breast, was strongly 
expressed in 83 % of basal-like tumors [ 14 ]. Furthermore, gene expression profi ling 
revealed that basal-like breast tumors were more similar to normal luminal progeni-
tor cells than any other epithelial subsets, including the stem cell-enriched popula-
tion [ 28 ]. In agreement, deleting the BRCA1 gene in mouse mammary epithelial 
luminal progenitors produces tumors that phenocopy human BRCA1-mutant breast 
cancers and the majority of sporadic basal-like breast cancer. As is well known, 
BRCA1 mutation-associated breast tumors frequently display a distinctive basal- 
like phenotype [ 29 ]. These data suggest that basal-like breast cancers arise from 
luminal progenitors but not from normal basal stem cells [ 30 ]. Consistent with their 
progenitor cell origin, several studies showed that basal-like breast cancers have 
stem cell-like properties. Breast cancer cells with a CD44 + /CD24 −  phenotype—a 
cell population characterized by the CD44 positive and CD24 negative or low cell 
surface antigen expression profi le—are found to possess tumor-initiating properties 
with stem cell-like features [ 31 ] and are enriched in basal-like breast tumors [ 32 ]. 
Furthermore, gene expression profi ling analysis showed that basal-like tumors have 
an embryonic stem cell-like gene expression signature [ 33 ].  

5.3     The Difference Between Basal-Like Breast Cancer 
and Triple-Negative Breast Cancer 

 Triple-negative breast cancers are defi ned immunohistochemically as tumors that 
lack ER, PR, and HER2 expression. Like basal-like breast cancers, triple-negative 
breast tumors also have high histologic grade and occur more frequently in young 
black and Hispanic women than in young women of other racial or ethnic groups 
[ 3 ]. Many cancers meet the defi nitions of both triple-negative breast cancers and 
basal-like breast cancers. Most basal-like breast cancers (55–85 %) are of a triple- 
negative staining pattern, and the majority of triple-negative breast cancers (70–
90 %) exhibit a basal-like phenotype [ 5 ,  12 ,  34 ]. Notably, some researchers claim 
that the basal-like breast cancers are composed almost entirely of triple-negative 
tumors [ 35 ]. Kreike and colleagues analyzed 97 triple-negative tumors and they 
found that all triple-negative tumors were classifi ed as basal-like tumors, based 
upon their overall gene expression profi le. These authors concluded that triple- 
negative tumors are synonymous with basal-like tumors, and thus both can be iden-
tifi ed by the three standard immunohistochemical markers ER, PR, and HER2 [ 36 ]. 
Notably, this study confi rmed that basal-like tumors are heterogeneous and can be 
subdivided into at least fi ve distinct subgroups [ 36 ]. 

 Although there are numerous similarities between basal-like and triple-negative 
breast cancers, there is evidence that these two terms are not synonymous. Not all 
basal-like cancers determined by gene expression profi ling lack ER, PR, and/or 
HER2; on the other hand, not all triple negative cancers show a basal-like phenotype 
by expression array analysis [ 12 ]. Bertucci and colleagues used immunohistochemi-
cal markers to defi ne triple-negative breast cancers and gene expression profi ling to 
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defi ne basal-like breast cancers. They found that in 172 triple-negative breast cancers, 
28 % of the tumors did not have the basal-like gene expression signature. Meanwhile, 
in 160 basal-like breast cancers, 23 % of the tumors did not have triple-negative phe-
notype [ 37 ]. Several other studies reported similar results: 8–29 % of triple-negative 
tumors did not show basal-like subtype, while 14–40 % of basal-like tumors did not 
show the triple-negative phenotype [ 34 ,  38 ,  39 ], suggesting an intrinsic difference 
between basal-like breast cancers and some triple-negative breast cancers. 

 Careful analysis of microarray-based expression profi les suggests that the triple- 
negative group also encompasses another molecular subgroup of breast cancer—
normal-like, which not only have a better prognosis than basal-like tumors but also 
do not respond to neoadjuvant chemotherapy in the same fashion as basal-like can-
cers [ 1 ,  34 ,  40 ]. It is now widely accepted that equating triple-negative tumors with 
basal-like breast cancer is inaccurate and misleading [ 41 ] and that the term “basal 
like” is not interchangeable with “triple negative.”  

5.4     BRCA1 and Basal-Like Breast Cancer 

 The BRCA1 tumor suppressor gene is localized on chromosome 17q and encodes a 
1,863-amino acid protein with a C3HC4-type zinc fi nger domain [ 42 ]. BRCA1 has 
multiple roles within cells, including those related to transcriptional regulation and 
repair of double-stranded DNA breaks to protect the genome during DNA replica-
tion. Cells that lack BRCA1 function have a defi ciency in the repair of double- 
stranded DNA breaks by homologous recombination, which is likely one of the 
mechanisms behind their association with increased cancer predisposition [ 43 ]. 
Accumulating data show that there is a close relationship between the BRCA1 
mutation and basal-like breast cancer. Breast cancers arising in patients with 
BRCA1 defi ciency are of triple-negative/basal-like subtype in the majority of cases 
[ 1 ,  44 ,  45 ]. Immunohistochemistry (IHC)-based studies classify 80–90 % of 
BRCA1-associated tumors as being triple negative or basal-like [ 44 ,  46 ,  47 ]. 
Furthermore, microarray results suggested that mutations in the BRCA1 gene pre-
dispose to the basal tumor subtype [ 1 ], as BRCA1-mutant tumors display the basal- 
like gene expression profi le in hierarchical clustering analysis [ 1 ,  48 ]. This may be 
partially due to the fact that BRCA1 can transcriptionally regulate genes associated 
with the basal-like phenotype in breast cancer [ 49 ]. For example, wild-type BRCA1 
represses the expression of the FOXC1 transcription factor in basal-like breast can-
cer [ 50 ]. FOXC1 has been proposed as a critical biomarker for basal-like breast 
cancer [ 51 ]. Loss of BRCA1 function or expression may induce FOXC1 expression 
and thereby elicit a basal phenotype. Expression of the cytokeratin CK5/6, a com-
monly accepted immunohistochemical marker of basal-like breast cancer, is also 
signifi cantly associated with BRCA1-related breast cancers [ 46 ]. 

 Although 5–10 % of breast cancer may be due to the inheritance of autosomal 
dominant breast cancer susceptibility alleles, the alteration in the expression or 
function of BRCA1 may be important in the development of sporadic basal-like 
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breast cancer [ 52 ]. Hypermethylation of the BRCA1 promoter, which leads to loss 
of BRCA1 transcription, has been reported to be present in 11–13 % sporadic breast 
cancers [ 53 ,  54 ]. Interestingly, the ID4 gene, which was identifi ed as a negative 
regulator of BRCA1 [ 55 ], was found to be expressed at 9.1-fold higher levels in 
sporadic basal-like breast cancer [ 56 ], suggesting a potential ID4-mediated mecha-
nism of BRCA1 dysfunction or defi ciency in sporadic breast cancer. 

 Another breast cancer susceptibility gene, BRCA2, also plays an important role 
in genome protection. BRCA2 is localized on chromosome 13q and encodes a 
3,418-amino acid protein [ 42 ]. It is a mediator of the core mechanism of homolo-
gous recombination [ 43 ]. However, unlike BRCA1, it has been shown that BRCA2 
is not involved in the biology of basal-like breast cancer as most BRCA2-mutant 
tumors are ER/PR positive [ 45 ,  57 ] and do not express basal cytokeratins such as 
CK5/14 [ 58 ]. BRCA2-related tumors also have different CGH profi les (which indi-
cate chromosomal gains and losses) and gene expression patterns compared with 
BRCA1-associated tumors [ 59 ,  60 ]. In addition, compared with basal-like and 
BRCA1-mutated tumors, BRCA2-mutated tumors express higher levels of p27 and 
p16 and lower levels of skp2, cyclin E, and caspase 3 [ 61 ].  

5.5     Potential Targets or Predictive Biomarkers 
for Basal- Like Breast Cancer Treatment 

5.5.1     PI3K/Akt 

 The phosphatidylinositol 3 kinase (PI3K) pathway is involved in many cellular 
functions, including cell proliferation, survival, and migration [ 62 ]. Deregulated 
PI3K/AKT activation promotes tumorigenesis, and this signaling pathway has been 
identifi ed as a putative therapeutic target in a range of human cancers [ 63 ]. The 
activation of PI3K pathway was signifi cantly associated with ER-negative and 
PR-negative status, high tumor grade, and a basal-like phenotype [ 64 – 66 ], and this 
activation was associated with the loss of PTEN. Lower levels of the tumor suppres-
sor PTEN were signifi cantly negatively correlated with Akt activity [ 64 ], which has 
been shown to be enriched in triple-negative or basal-like breast cancer [ 67 ,  68 ]. 
Further study showed that this activation of PI3K pathway in basal-like breast can-
cer may also be attributed to the loss of inositol polyphosphate 4-phosphatase II 
(INPP4B), which hydrolyzes phosphatidylinositol (3,4,5)-triphosphate PtdIns(3,4)
P2 generated from the PI3K product PtdIns(3,4,5)P3. INPP4B functions as a tumor 
suppressor by negatively regulating normal and malignant mammary epithelial cell 
proliferation through regulation of the PI3K/Akt signaling pathway [ 69 ]. 
Interestingly, among the three Akt isoforms, only Akt3 is overexpressed in 
ER-negative breast tumors and represents the major active Akt in ER-negative 
breast cancer cells [ 70 ]. Consistent with this fi nding, a recurrent membrane- 
associated guanylate kinase (MAGI3)—Akt3 fusion, which leads to constitutively 
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active Akt3 activity—was reported to be enriched in triple-negative breast cancer 
[ 67 ]. These fi ndings suggest that the use of isoform-specifi c Akt inhibitors should 
be evaluated in clinical trials for the treatment of MAGI3-Akt3 fusion-positive 
triple- negative breast cancers.  

5.5.2     MAPK/ERK 

 MAPK/ERK signaling pathway plays an essential role in regulating the growth and 
survival of neoplastic cells [ 71 ]. A previous study found that cell lines and xeno-
grafts with a basal-like gene expression signature were sensitive to the small mole-
cule inhibitor of MAPK/ERK kinase (MEK) as opposed to cell lines and xenograft 
models of other breast cancer subtypes [ 72 ]. The study also found that loss of PTEN 
is a negative predictor of response to MEK inhibition, and treatment with a selective 
MEK inhibitor caused upregulation of PI3K pathway signaling, suggesting that 
single-agent MEK inhibition may be a promising therapeutic modality for basal- 
like breast cancers with intact PTEN. Similar results showed that basal-like breast 
cancer cells were particularly susceptible to growth inhibition by small molecule 
MEK inhibitors [ 73 ]. In agreement with these reported results, it was recently found 
that dual specifi city protein phosphatase 4 (DUSP4), an ERK phosphatase, corre-
lated with breast cancer resistance to neoadjuvant chemotherapy and with basal-like 
breast cancer status [ 74 ]. This study also showed that gene expression patterns with 
respect to Ras-ERK pathway activation, probably due to DUSP4 downregulation, 
are associated with basal-like tumors.  

5.5.3     FOXC1 

 FOXC1 is a transcription factor playing an important role in the development of the 
brain and the eye during the embryonic stage [ 75 – 78 ]. Loss of FOXC1 functions can 
cause hydrocephalus, abnormal eyelids, and Axenfeld-Rieger syndrome. Our previ-
ous studies found that FOXC1 is a theranostic biomarker that is specifi c for basal-
like breast cancer [ 51 ]. Ectopic overexpression of FOXC1 led to increased migration, 
invasion, and proliferation of breast cancer cells, and knockdown of FOXC1 led to 
opposite results. Elevated FOXC1 expression predicted poor overall survival in 
basal-like breast cancer, a higher incidence of brain metastasis, and a shorter brain 
metastasis-free survival in lymph node-positive or lymph node- negative patients, 
offering FOXC1 as not only a potential prognostic predictor but also a potential 
molecular therapeutic target in this breast cancer subtype [ 51 ]. Kolacinska et al. also 
showed that triple-negative breast cancer subtype was associated with higher expres-
sion of FOXC1 [ 79 ]. In addition, it was reported that basal-like breast cancer defi ned 
by triple negative plus FOXC1 demonstrated superior prognostic relevance com-
pared to basal-like tumors defi ned by triple negative alone or triple negative plus 
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basal CKs [ 80 ]. Recent work further suggests that the activation of NF-κB signaling 
pathway mediates the function of FOXC1 in human basal-like breast cancer [ 66 ]. 
Sustained NF-κB activation exists mostly in human basal-like breast cancer cell 
lines and ER-negative breast cancer, with its highest activity found in triple-negative 
tumors [ 81 – 83 ]. FOXC1 may serve as a critical regulator of NF-κB regulator in 
basal-like breast cancer. Consistent with this result, a recent study showed that 
matrix metalloprotease 7 (MMP7), which is known to be regulated by NF-κB, medi-
ates the invasion-promoting function of FOXC1 in basal- like breast cancer [ 84 ]. 
Moreover, FOXC1 levels have been shown to predict resistance to chemotherapy in 
human breast cancers and cell models [ 50 ,  85 ], refl ecting another potential mecha-
nism underlying the role of FOXC1 in basal-like tumor progression.  

5.5.4     αB-Crystallin 

 α-Basic-crystallin (αB-crystallin) is a member of the small heat shock protein fam-
ily and plays an important role in the regulation of apoptosis [ 86 ]. Accumulating 
evidence suggests that αB-crystallin is a potential biomarker for basal-like breast 
cancer [ 87 – 92 ]. The expression of αB-crystallin was found to be positively corre-
lated with other established basal-like markers and histological subtypes associated 
with basal-like breast cancer [ 87 ], and the expression of αB-crystallin indepen-
dently predicts shorter survival in patients with basal-like breast cancer [ 89 ], indi-
cating that αB-crystallin is a diagnostic and prognostic indicator for this type of 
tumors. In vitro studies have shown that it is upregulated by the transcription factor 
Ets1, which promotes cell proliferation, and is also overexpressed in basal-like 
breast cancer [ 92 ]. Mechanistically, αB-crystallin induces breast cancer cell growth, 
chemoresistance, migration, and invasion by activating MEK/ERK pathway [ 89 ], 
providing a biological basis of why αB-crystallin is associated with poor clinical 
outcomes in breast cancer.  

5.5.5     P-Cadherin 

 P-cadherin is a calcium-dependent cell-cell adhesion glycoprotein. In normal adult 
breast tissue, P-cadherin is restricted to myoepithelial cells and is involved in archi-
tecture and differentiation functions [ 93 ]. Studies have shown that P-cadherin is a 
reliable biomarker for basal-like breast cancer [ 15 ,  94 – 97 ] and is used in a IHC 
marker panel to identify these breast cancers. The expression of P-cadherin in inva-
sive ductal tumors is negatively correlated with ER and PR and positively correlated 
with recurrence and distant metastasis [ 97 ]. In vitro studies have shown that 
P-cadherin is induced by FOXC1 [ 51 ], while suppressed by functional BRCA1 
[ 49 ]. Moreover, it has been shown that P-cadherin is associated with high-grade 
tumor subtypes and is a marker for poor prognosis [ 98 ], but there are also reports 
showing that P-cadherin is not an adverse prognostic factor and may not be 
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associated with EGFR [ 94 ,  95 ]. Interestingly, P-cadherin is also associated with the 
expression of the breast stem cell markers CD44, CD49f, and aldehyde dehydroge-
nase 1 in the basal-like tumors [ 99 ]. It mediates stem cell properties such as the 
mammosphere-forming capacity and radiation resistance, refl ecting its potential 
role in regulating aggressive behavior of basal-like breast cancer.  

5.5.6     Integrin 

 Integrins comprise a large family of cell–cell adhesion receptors that mediate inter-
actions between the extracellular environment and the cytoplasm. These transmem-
brane proteins play a crucial role in cell growth, survival, and invasion [ 100 ]. Both 
gene expression profi ling and immunohistochemical analysis revealed that integrin 
β4 is signifi cantly associated with basal-like tumors and that the integrin β4 “signa-
ture” genes, i.e., the top-ranked 65 genes in correlation with β4 expression, predict 
poor prognosis in breast cancer [ 101 ]. Interestingly, the expression level of integrin 
β4 in basal-like breast cancer cell lines can be upregulated by the basal-like tumor- 
associated transcription factor FOXC1 [ 51 ]. Integrin α9β1, another member of the 
integrin family, is a receptor for extracellular matrix (ECM), its expression showed 
a signifi cant association with reduced overall patient survival and reduced distant-
metastasis- free survival, and acts as a potential marker for basal-like breast cancer 
[ 102 ]. Src, a non-receptor tyrosine kinase commonly activated by integrin/focal 
adhesion kinase signaling, has also been linked with basal-like tumors [ 103 ,  104 ].   

5.6     Treatment Strategies for Basal-Like Breast Cancer 

 Because most of the basal-like breast cancers have low or undetectable expression of 
ER, PR, and HER2, the majority of these cancers cannot be effectively treated with the 
existing targeted therapies, such as antiestrogen and anti-HER2 therapies. So far, che-
motherapy remains the only modality of systemic therapy for basal-like tumors, and 
considerable efforts have been made to establish molecular targets and thereby targeted 
therapy for this subtype of breast cancer. Although some basal-like tumors express ER 
and HER2 [ 105 ,  106 ], whether antiestrogen or anti-HER2 therapies can improve 
the outcome of these cancers awaits to be determined, as basal phenotype-associated 
signaling pathways may induce de novo resistance to the treatment [ 105 ,  107 ]. 

5.6.1     Chemotherapy 

 There is currently no standard chemotherapeutic regimen for basal-like breast can-
cer. Anthracycline-containing regimens remain a common modality for treatment of 
basal-like breast cancer. Three-drug combinations of cyclophosphamide, 
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methotrexate or epirubicin, and fl uorouracil are also being evaluated and compared 
in clinical trials [ 108 ]. Recent studies showed that the combination of docetaxel and 
carboplatin is promising for the treatment of triple-negative breast cancer [ 109 ]. In 
addition, meta-analysis indicates that taxanes may have added benefi ts in anthracy-
cline chemotherapy treatment of breast cancer regardless of ER levels [ 110 ]. 
Notably, preclinical and clinical studies have shown increased sensitivity of 
BRCA1-associated breast cancer to the DNA-damaging agents such as platinum 
drugs [ 111 ,  112 ], due to defective double-strand repair in BRCA1-mutant cells. It 
merits mentioning that these clinical trials did not stratify heterogeneous triple- 
negative patient cohorts into basal-like and non-basal-like groups, which may com-
pound the challenges to compare the effi cacies of different chemotherapies. 

 Clinical studies show that basal-like tumors, compared with the other subtypes, are 
more sensitive to paclitaxel- and doxorubicin-containing preoperative chemotherapy, 
as well as to high-dose chemotherapy [ 34 ,  113 ], probably due to their higher prolifera-
tion rate [ 14 ,  114 ]. Basal-like and HER2 subtypes are associated with the highest rates 
of pathologic complete response (45 %), in comparison to luminal tumors where the 
response rate is only 6 % [ 34 ]. However, the basal-like subtype itself is not suffi cient 
to predict the likelihood of chemotherapy response because these tumors are  frequently 
of a high nuclear grade and hormone receptor negative, both of which are known to 
be associated with higher probability of pathologic complete response to preopera-
tive chemotherapy [ 34 ]. Although basal-like breast cancers showed a better response 
rate to chemotherapy, these tumors had an increased likelihood of distant recurrence 
and shorter survival compared with ER+ tumors if pathologic complete response is 
not achieved by neoadjuvant therapy [ 35 ,  115 – 117 ]. One plausible explanation per-
tains to the notion that chemoresistant cancer stemlike cell populations are enriched in 
basal-like breast cancer. Contrary to the above observations, studies also showed that 
basal-like tumors had a relatively low response rate to neoadjuvant chemotherapy 
with docetaxel, doxorubicin, and cyclophosphamide [ 118 ], maybe because of a higher 
proportion of ER+ (albeit low levels of ER) and a lower proportion of high-grade 
tumors in that cohort of basal-like tumors.  

5.6.2     PARP Inhibitors 

 DNA repair pathways involved in single-strand and double-strand breaks are critical 
for maintaining stability and integrity of the genome. As discussed before, the 
BRCA1 gene plays an essential role in the repair of double-strand breaks by the 
homologous recombination mechanism [ 119 ,  120 ]. The majority of BRCA1 
mutation- associated breast cancers display the basal-like phenotype, and some spo-
radic basal-like breast cancers, i.e., those with BRCA1 downregulation, also pheno-
typically resemble BRCA1-mutant breast cancers (a concept called BRCAness) 
[ 56 ]. It is postulated that these BRCA1 mutation or BRCAness-associated tumors, 
which have defective homologous recombination repair, would be susceptible to the 
drugs, blocking single-strand break repair mechanism. This approach, referred to as 
“synthetic lethal,” will render tumor cells to rely on the error-prone nonhomologous 
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end-joining mechanism to repair DNA breaks, which eventually leads to genomic 
instability and apoptosis [ 121 ]. Poly(ADP-ribose) polymerases (PARPs) are a fam-
ily of nuclear proteins (enzymes) involved in base excision repair, a key pathway in 
the repair of single-strand breaks [ 122 ,  123 ]. In vitro studies showed that BRCA1 
dysfunction sensitizes cells to the inhibition of PARP enzymatic activity, resulting 
in chromosomal instability, cell cycle arrest, and subsequent apoptosis [ 124 ], and 
this is due to DNA repair defi ciency [ 125 ]. 

 A phase II clinical study involving patients with metastatic triple-negative breast 
cancer found that addition of iniparib, a compound initially thought to be a PARP 
inhibitor, to gemcitabine and carboplatin improved the rate of overall response and 
prolonged the median progression-free survival from 3.6 months to 5.9 months and 
the median overall survival from 7.7 months to 12.3 months [ 126 ]. However, yet to 
be published data from the phase III trial with iniparib failed to meet its primary 
objective of improvement in the combined end point of progression-free and overall 
survival [ 108 ]. Surprisingly, it was subsequently reported that iniparib does not 
inhibit PARP1 or PARP2 activity in vitro [ 127 ], negating the relevance of this trial 
for testing the utility of PARP inhibitors as a therapeutic strategy in breast cancer. 
Positive clinical benefi t in patients with BRCA-mutated breast cancer has been 
reported with a confi rmed inhibitor of PARP 1 and 2, olaparib, in a phase II study, 
with a reported response rate of 41 % [ 128 ]. A possible confounding issue related 
to this synthetic lethal approach is that the activity of most existing PARP inhibitors 
against PARP 1 and 2 has been reported with IC50s in the nanomolar range, yet 
activity against other members of the PARP enzyme family is unknown, raising the 
issue of a lack of selectivity [ 129 ]. There are 17 known PARP family proteins with 
PARP1 as the most abundant [ 122 ]. PARP1 and PARP2 function in base excision 
repair. Specifi city for PARP1 inhibition is a critical issue which needs to be 
addressed for improving the effi cacy of these inhibitors. It also merits mentioning 
that these clinical studies were designed on the assumption that all studied cases 
were PARP-positive, but in fact 18.1 % of BRCA1-associated cancers had low 
expression of or did not express nuclear PARP1 protein [ 6 ]. In addition, it is not 
known whether PARP levels correlated with response to PARP inhibitors in BRCA- 
mutated cancers. Therefore, the expression of PARP protein in tumor cells should 
be taken into account in the future trials of PARP inhibitors [ 130 ]. Although PARP 
inhibitors may eventually prove to be effective as monotherapy or in combination 
with chemotherapy for BRCA-associated breast cancer, there is an urgent need to 
identify those patients without BRCA mutations who may benefi t from this poten-
tial therapy and account for the majority of the triple-negative patient population. 
Two recent reviews summarize the current status and our understanding of PARP 
inhibitors in breast cancer-related clinical trials [ 108 ,  131 ].  

5.6.3     EGFR Inhibitors 

 Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase of the ErbB 
family and is abnormally activated in many epithelial tumors. EGFR mRNA and 
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protein are detected more frequently and at higher levels in triple-negative breast 
cancers [ 12 ,  132 ,  133 ], and the EGFR gene is amplifi ed in some basal-like breast 
cancer [ 134 ]. In addition, EGFR is a predictor of poor prognosis in triple-negative 
breast cancer, independent of nodal status and size [ 135 ]. As such, EGFR-directed 
monoclonal antibodies or tyrosine kinase inhibitors, as a single agent or in combina-
tion with chemotherapy drugs, have been pursued as treatment modalities for basal- 
like breast cancer [ 136 ]. So far, targeting EGFR seems to only have limited success 
and has not been approved as a therapy for basal-like breast cancer [ 137 ,  138 ]. 
These results showed that anti-EGFR drugs were not effective in treatment of 
unselected triple-negative breast cancer patients. As EGFR levels by themselves 
may not be a reliable indicator for the activation of EGFR signaling, there is a need 
to exploit new predictive biomarkers for EGFR-targeted therapy to identify those 
patients with “EGFR-addicted” basal-like breast cancers which harbor hyperactive 
EGFR signaling and depend on this signaling for growth and progression.  

5.6.4     Other Targeted Therapy Approaches 

 In addition to the targets mentioned above, several other potential therapeutic tar-
gets have been evaluated. Dasatinib, a Src inhibitor, selectively inhibits growth of 
basal- like/triple-negative breast cancer cell lines [ 139 ]. Single-agent dasatinib has 
limited activity in patients with triple-negative breast cancer [ 140 ]. Although abnor-
mal activation or amplifi cation of Src has been detected in various tumors [ 141 ], no 
studies have convincingly shown that Src is a critical basal marker. c-Kit expression, 
which can be inhibited by the multitargeted anticancer drug imatinib mesylate [ 5 ], 
is more common in basal-like tumors [ 12 ,  142 ,  143 ]. One caveat is that c-Kit levels 
do not correlate with prognosis, which argues against a critical role of c-Kit in these 
breast cancers. Moreover, other targets such as Hsp90, mTOR, VEGF, and androgen 
receptor are also being investigated as potential therapeutic targets in basal-like 
breast cancer [ 144 ]. However, the relevance or therapeutic potential of targeting 
these proteins in human basal-like tumors may be diminished if they turn out not to 
be specifi c markers or regulators of human basal-like breast cancer. 

 In summary, lessons from treatment of ER+ and HER2+ breast cancer emphasize 
the notion that the success and ultimate benefi t of targeted therapy depend on the 
expression level and essential role of the target protein in tumor cells. Thus, elucida-
tion of the functions of these proteins and selection of patients with cancer charac-
terized by these proteins may be the key to an effective targeted therapy.   

5.7     Conclusions 

 Basal-like breast cancer represents an aggressive and biologically heterogeneous 
subtype of breast cancer, with poor prognosis, a specifi c pattern of distant metasta-
sis, and a high recurrence rate with standard chemotherapy. Unfortunately, there are 
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no existing targeted treatment strategies for basal-like breast cancer. Additionally, a 
consensus on the defi nition for basal-like breast cancer is lacking. Microarray-based 
gene expression profi ling has its limitations in the clinical identifi cation of basal-
like tumors, because microarray assays cannot be readily applied to formalin-fi xed, 
paraffi n- embedded tissues and its complexity makes it expensive. A suitable, prag-
matic, objective solution would be to use IHC surrogates to defi ne the subtype. 
However, the immunohistochemical markers used to detect basal-like breast can-
cers, which include ER, PR, HER2, EGFR, and cytokeratin 5/6, also present issues 
of sensitivity and specifi city to detect basal-like tumors defi ned by expression pro-
fi ling methods, due to scoring and interpretation of immunohistochemical staining 
[ 145 ]. In addition, these markers alone may be inadequate to identify the clinically 
relevant biological diversity within this group of cancers. A consensus defi nition is 
far from being achieved. Several genes, such as FOXC1, have been shown to be 
consistently and exclusively overexpressed in basal-like breast cancers. These genes 
also play essential roles in basal-like breast cancer cell function and thus may serve 
as theranostic marker and therapeutic target for treatment of basal-like breast can-
cer. It is also important to design prospective clinical studies to evaluate these mark-
ers in comparison with previously established markers such as EGFR and CK5/6 in 
the diagnosis and prognostication of basal-like breast cancer and to study the impact 
of these individual protein markers in response to specifi c chemotherapy. Further 
understanding of the biology of basal-like breast cancer will lead to more effective 
treatment and prevention of this devastating disease.     
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    Abstract     The frequency of positive margins after lumpectomy for breast cancer 
ranges from 18 to 50 %. Negative margins are necessary in order to minimize the 
risk of local recurrence after breast-conserving therapy. Many approaches have 
been described to reduce re-excision rates, including tumor localization techniques, 
surgical techniques, intraoperative imaging, and intraoperative pathologic assess-
ment. Localization of nonpalpable tumors is possible with single or bracketed wires 
and with radioactive seeds. Surgical techniques such as shaved cavity margins and 
intraoperative specimen inking are advocated by some surgeons as a way to reduce 
margin positivity. Intraoperative imaging with ultrasonography, mammography, 
micro-computed tomography, and radiofrequency spectroscopy may have a role in 
decreasing re-excision rates after lumpectomy. Intraoperative pathologic evaluation 
of margins by frozen section or touch preparation cytology may also be benefi cial. 
This chapter reviews these approaches in detail.  

6.1         Introduction 

 Breast-conserving therapy (BCT) is a safe alternative to mastectomy for many inva-
sive and in situ breast cancers. Evidence from large, prospective, randomized, clini-
cal trials has shown no signifi cant difference in overall or disease-free survival 
comparing mastectomy to lumpectomy plus radiation for early stage breast cancer 
[ 1 – 3 ]. The main disadvantage of BCT compared to mastectomy is the potential for 
local recurrence. Local recurrence rates with breast conservation range from 9 to 
22 % with 20 years of follow-up [ 2 – 5 ]. In comparison, the risk of local chest wall 
recurrence after mastectomy for stage I and II breast cancers ranges from 0 to 10 % 
(Table  6.1 ).
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6.2        Patient Selection 

 There are few absolute contraindications to BCT. They include fi rst or second tri-
mester of pregnancy, multicentric disease with two or more tumors in separate 
quadrants of the breast, a history of prior therapeutic breast irradiation including 
mantle irradiation for Hodgkin’s disease, and inability to achieve negative surgical 
margins [ 6 ,  7 ]. Relative contraindications include certain collagen vascular disor-
ders, such as scleroderma and systemic lupus erythematosus. 

 Tumor size must also be taken into account when considering breast conserva-
tion. While most trials included tumors less than 5 cm in size, there is no specifi c 
tumor size which precludes BCT. More important is the ratio of tumor size to breast 
size. Breast conservation is not ideal for a large tumor within a small breast when 
excision would result in a poor cosmetic outcome.  

6.3     Defi nition of a Negative Margin 

 The most important risk factor for local recurrence after BCT is the presence of 
positive lumpectomy margins [ 8 – 11 ]. While there is no consensus as to what con-
stitutes a negative margin, most surgeons typically re-excise for margins less than 
2 mm [ 12 ] (Fig.  6.1 ). Re-excision of an initially close (<2 mm) or positive margin 
which results in a negative fi nal margin reduces the risk of an in-breast recurrence 
to that of an initially negative margin [ 13 ]. In contrast to surgeons, the majority of 
radiation oncologists in North America (45.9 %) only require no tumor on the inked 
margin to deem a margin negative [ 14 ].

6.4        Re-excision Rates and Risk Factors 

 The frequency of involved (positive and/or close) margins after lumpectomy ranges 
from 18 to 50 % [ 15 – 23 ]. Two of the largest reported series with over 3,000 patients 
cite rates of 18–23 % [ 15 ,  16 ]. Recognized risk factors for involved margins include 

   Table 6.1    Local recurrence rates for breast conservation therapy and mastectomy   

 Trial 
 Number 
of patients 

 Breast 
cancer 
stage 

 Length of 
follow-up 
(years) 

 Local 
recurrence 
BCT 

 Local recurrence 
mastectomy 

 NSABP B-06 [ 3 ]  1,851  I, II  20  14 %  Not reported 
(8 % at 8 years) 

 National Cancer Institute, USA [ 4 ]  237  I, II  18  22 %  0 % 
 National Cancer Institute, Milan [ 2 ]  701  I  20  9 %  2 % 
 Institut Gustave- Roussy [ 5 ]            179  I, IIA  22  16 %  10 % 

   NSABP  National Surgical Adjuvant Bowel and Breast Project  
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diagnosis by excisional biopsy, younger age, larger tumor size, multifocality, exten-
sive intraductal component, and invasive lobular carcinoma [ 17 – 23 ]. When margins 
are close or positive, reoperation by re-excision or mastectomy is advised in order 
to attain negative margins.  

6.5     Tumor Localization 

6.5.1     Wire Localization 

 For more than 20 years, wire localization has been used for clinically occult tumors. 
This technique allows for intraoperative detection of nonpalpable tumors. Wires 
may be placed by mammographic, sonographic, or magnetic resonance imaging 
guidance. After excision, the lumpectomy specimen is evaluated mammographi-
cally for the presence of the target lesion(s). Target lesions can include microcalci-
fi cations, masses, and/or clips. A single wire is most commonly used, but multiple 
bracketing can also be placed to better defi ne the extent of disease. 

6.5.1.1     Multiple Wires 

 Multiple wires may be placed to bracket large areas of malignant calcifi cations. 
Placing multiple wires to delineate the extent of disease has the potential to decrease 
re-excision rates. However, the effect of multiple wires on the volume of resection 

  Fig. 6.1    Invasive carcinoma extending to <0.1 cm from the new, inked margin ( arrowheads ). 
 Courtesy of Elena F .  Brachtel MD ,  Department of Pathology ,  Massachusetts General Hospital , 
 Boston ,  MA        

 

6 Re-excision After Lumpectomy for Breast Cancer



114

is debatable. Kirstein et al. found a signifi cant decrease in re-excision rates after 
lumpectomy with the use of multiple wires compared with a single wire, 28 % ver-
sus 36 %, respectively [ 24 ]. Unfortunately, this decrease in re-excision rates with 
the use of multiple wires was associated with a signifi cant increase in the volume of 
tissue excised [ 24 ]. While Burkholder and colleagues detected a trend toward 
decreased re-excision rates with multiple wires compared to a single wire (25.6 % 
versus 17.4 %, respectively), this did not reach signifi cance [ 25 ]. In contrast to 
Kirstein, Burkholder found that multiple wires compared to a single wire led to 
equivalent lumpectomy volumes for DCIS and signifi cantly smaller lumpectomy 
volumes for stage 1 and 2 invasive breast cancers [ 24 ,  25 ].   

6.5.2     Radioactive Seed Localization 

 An alternative to wire localization is radioactive seed localization. With this tech-
nique a titanium seed containing  125 I is placed preoperatively using sonographic or 
mammographic guidance [ 26 ]. Because the half-life of the  125 I seed is 60 days, it can 
be placed days before surgery, an advantage over wire localization. It also elimi-
nates potential complications of wire localization, including wire displacement and 
transection. A standard intraoperative gamma probe, set to the  125 I setting, is used to 
scan over the breast in order to detect the area of greatest activity. This allows for 
incision placement directly over the target lesion if desired. The gamma probe is 
then used throughout the surgery to give audible feedback to the surgeon as to the 
location and depth of the lesion [ 26 ]. 

 Two randomized, controlled trials comparing wire localization with radioactive 
seed localization have been published [ 27 ,  28 ]. Both compared re-excision rates 
between groups and results were confl icting. Gray et al. found a signifi cant improve-
ment in re-excision rates with radioactive seed localization (26 %) compared with 
wire localization (57 %,  p  = 0.02) [ 27 ]. However, only 42 % of patients had a known 
preoperative cancer diagnosis, which may have limited the extent of resection. In 
contrast, Lovric et al. only included patients with a preoperative cancer diagnosis 
and found no signifi cant difference in reoperation rates with radioactive seed local-
ization (15.1 %) compared with wire localization (19.0 %,  p  = 0.389) [ 28 ].   

6.6     Surgical Techniques 

6.6.1     Shaved Cavity Margins 

 Taking additional shaved cavity margins at the time of lumpectomy is advocated by 
some surgeons as a way to decrease re-excision rates and/or reduce the volume of 
breast tissue excised [ 29 – 38 ]. This technique involves excision of all margins 
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adjacent to the lumpectomy cavity. The absolute reduction in re-excision rates with 
shaved cavity margins compared with lumpectomy alone in retrospective studies 
ranges from 0 % to 20 % [ 36 – 38 ]. No prospective, randomized trials comparing 
these two techniques have been reported. At least two studies have found that taking 
additional shaved cavity margins results in a signifi cant reduction in the total vol-
ume of breast tissue excised [ 37 ,  38 ]. 

 Another benefi t of taking shaved cavity margins is the possibility of improved 
pathological assessment of true margins. False-positive lumpectomy margins are 
thought to occur due to disruption of friable tissue at the edge of lumpectomy speci-
mens. This tissue can inadvertently be removed during the procedure itself, during 
specimen handling, and/or during specimen radiography. In a study by Dooley, the 
incidence of false-positive lumpectomy margins was found to be 26.7 % [ 39 ]. 
Taking additional shaved cavity margins for defi nitive pathological evaluation could 
help avert this problem.  

6.6.2     Intraoperative Specimen Inking 

 Intraoperative specimen inking by the surgeon at the time of lumpectomy may have 
a role in decreasing re-excision rates. When Singh et al. performed a retrospective 
review looking at six-color specimen inking by surgeons intraoperatively versus 
pathologists in the laboratory, they found a 50 % relative reduction in close/positive 
margins, from 46 % to 23 % [ 40 ]. Although results are promising, they did not reach 
signifi cance ( p  = 0.06), likely due to the small number of patients included in the 
study ( n  = 65). Additional studies are needed to validate these results.   

6.7     Intraoperative Imaging 

6.7.1     Intraoperative Ultrasound 

 Intraoperative ultrasound for localization of nonpalpable breast cancers was intro-
duced in 1988 as an alternative to wire localization [ 41 ]. Intraoperative ultrasound is 
successful in identifying the target lesion in 95.7–100 % of cases [ 42 ,  43 ]. Advantages 
of this technique include fl exibility in surgical scheduling by omitting wire place-
ment by radiology, improvement in patient comfort and anxiety, and enhanced intra-
operative margin assessment with the potential to lower re-excision rates [ 42 ,  43 ]. 

 Utilizing this technique, re-excision rates of 4–11 % have been cited [ 43 – 46 ]. In 
a small, prospective, randomized trial, Rahusen and colleagues found a signifi cant 
improvement in re-excision rates with intraoperative ultrasound compared to wire 
localization for nonpalpable tumors (11 % versus 45 %,  p  = 0.007) [ 45 ]. While intra-
operative ultrasound has proven useful for localization of invasive cancers, visual-
ization of DCIS has been more diffi cult [ 42 ,  46 ,  47 ]. In fact, when James et al. 
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compared intraoperative ultrasound to wire localization for DCIS, they found no 
signifi cant difference in re-excision rates between these two modalities [ 47 ]. This is 
likely because the calcifi cations present in DCIS are not typically seen with ultra-
sound. When using intraoperative ultrasound for excision of DCIS, there must be 
a sonographically visible target, such as a hematoma, post-biopsy clip, or biopsy 
cavity, present [ 48 ].  

6.7.2     Specimen Mammography 

 Specimen mammography is the standard of care when excising a nonpalpable breast 
cancer which has been wire localized to ensure excision of the target lesion. It can 
also show where the target lesion is in relation to the lumpectomy margins. The 
sensitivity of specimen mammography for predicting margins is 49–62 %, while the 
specifi city is 77–95 % [ 49 – 51 ]. Prior to the introduction of specimen mammogra-
phy, Layfi eld and colleagues relied on macroscopic inspection of the lumpectomy 
cavity and specimen to ensure an adequate resection; the sensitivity of this tech-
nique was much lower at 7.7 % [ 51 ]. 

 If specimen mammography shows compromised margins, taking immediate 
directed cavity shaves has the potential to reduce re-excision rates [ 52 ]. While a 
recent retrospective cohort study by Layfi eld et al. failed to demonstrate a signifi -
cant reduction in re-excision rates with specimen mammography, it did show that 
intraoperative specimen mammography was able to signifi cantly reduce the volume 
of breast tissue excised during lumpectomy [ 51 ]. This may have a positive impact 
on cosmetic outcome with BCT.  

6.7.3     Specimen Micro-Computed Tomography 

 Micro-computed tomography (micro-CT) is a newer technology for breast tissue 
evaluation. It provides a three-dimensional imaging of specimens with spatial reso-
lution down to <1 μm [ 53 ]. It has the capability to differentiate breast masses from 
fi brous breast tissue and benign calcifi cations from malignant ones [ 54 ]. Micro-CT 
provides noninvasive, high-quality imaging of intact small specimens up to 15 cm 
in diameter, is self-shielded, and is compact enough to be placed near the operating 
room for convenient access. It takes 7 min to scan the specimen and create two- 
dimensional cross-sectional images and an additional 7 min to fully reconstruct the 
images into three-dimensional images [ 55 ]. 

 A recent study comparing specimen mammography to specimen micro-CT for 
evaluation of lumpectomy margins found increased sensitivity for positive margin 
detection with micro-CT [ 56 ]. Micro-CT had a sensitivity of 60 % and a specifi city 
of 93 %, while specimen mammography had a sensitivity of 36 % and a specifi city 
of 96 % [ 56 ]. Micro-CT may also be useful for the intraoperative evaluation of 
shaved cavity margins according to a small pilot study [ 55 ].  
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6.7.4     Radiofrequency Spectroscopy 

 Radiofrequency spectroscopy with MarginProbe (Dune Medical, Israel) is a novel 
method for intraoperative margin assessment. The device probe is directly applied 
to the lumpectomy specimen after excision. Radiofrequency signals are transmitted 
from the probe to the tissue, refl ected back, and collected by the console [ 57 ]. The 
refl ected signals are algorithmically analyzed and reported as “positive” or “nega-
tive.” A positive reading indicates invasive cancer or DCIS detected within 1 mm of 
the lumpectomy specimen edge. Utilizing this technology, Allweis and colleagues 
performed a randomized, controlled trial of 300 patients and found a 56 % reduction 
in re-excision rates, from 12.7 % to 5.6 % [ 58 ]. One downside of the device is that 
it is less successful at assessing margin widths of 2 mm and 5 mm compared with 
1 mm [ 58 ,  59 ].   

6.8     Intraoperative Pathologic Assessment 

6.8.1     Intraoperative Frozen Section 

 Some institutions routinely perform intraoperative frozen sections to analyze breast 
cancer lumpectomy margins to decrease the need for re-excision. With this process, 
the specimen is inked, frozen, and sectioned and then thawed, stained, and evaluated 
by a pathologist while the patient remains in the operating room [ 60 ]. When Esbona 
and colleagues performed a systematic review of the literature, they found that 
intraoperative frozen section analysis of lumpectomy margins led to a signifi cant 
reduction in re-excision rates compared to permanent section analysis, from 35 % 
(±3 %) to 10 % (±6 %) ( p  < 0.0001) [ 60 ]. 

 The reported sensitivity of intraoperative frozen section analysis was 83 % (± 
13 %), while the reported specifi city was 95 % (±8 %) [ 60 ]. The variability in sen-
sitivity may be due to pathologist experience [ 61 ]. The use of neoadjuvant chemo-
therapy has also been associated with a lower sensitivity of intraoperative frozen 
section [ 62 ], while lower specifi city has been linked to the presence of atypical cells 
and sclerosing adenosis [ 60 ]. 

 One major drawback of frozen section analysis of lumpectomy margins is that it 
is a labor-intensive process which requires an on-site dedicated pathology team 
[ 63 ]. It also adds signifi cantly to operating room time, around 30–53 min [ 62 ,  64 ]. 
However, despite the increased operating room time and added costs involved, 
Osborn and colleagues found that intraoperative frozen section analysis of lumpec-
tomy margins may be cost saving when an institution’s re-excision rates without 
frozen section are greater than 36 % [ 63 ]. Opponents of this process do worry that 
freezing and thawing the specimen could results in loss of tissue which could com-
promise defi nitive evaluation of the tumor by the pathologist for histologic informa-
tion and tumor staging [ 60 ,  61 ].  
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6.8.2     Intraoperative Touch Preparation Cytology 

 Intraoperative touch preparation cytology or “imprint cytology” has been proposed 
as a more rapid and simple alternative to intraoperative frozen section [ 65 ]. With 
this technique, the lumpectomy specimen is oriented and pressed onto glass slides 
making an imprint of all margins [ 60 ]. Slides are then fi xed, stained, and micro-
scopically evaluated. Malignant cells adhere to the slides, while benign adipose 
tissue does not [ 61 ]. The entire process takes an average of 10 min [ 66 ]. 

 Utilizing this technique, re-excision rates of 11 % (± 4 %) have been reported 
[ 60 ]. The sensitivity of intraoperative imprint cytology is 72 % (± 38 %), while the 
specifi city is 97 % (±3 %) [ 60 ]. There is a greater degree of variability in the sensi-
tivity of imprint cytology among studies compared to frozen sections [ 60 ]. The use 
of imprint cytology for margin evaluation in patients with invasive lobular carci-
noma is limited [ 67 ]. Another shortcoming of imprint cytology is that it only detects 
positive margins (tumor cells on the lumpectomy surface) without taking into 
account close margins [ 61 ].   

6.9     Multiple Re-excisions 

 Performing multiple re-excisions to complete breast conservation therapy is a safe 
alternative to mastectomy. 61–70 % of patients undergoing two or more re- excisions 
will achieve negative margins [ 68 ,  69 ]. There is an acceptably low risk of locore-
gional and systemic failure when negative margins are ultimately achieved in the 
setting of appropriate radiation and systemic therapy. The 5-year locoregional 
recurrence rate after multiple re-excisions ranges from 2 to 5.5 % and is not signifi -
cantly different than that of patients undergoing a single re-excision [ 68 ,  70 ].     
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    Abstract     Angiogenesis, the process by which new blood vessels are formed, is 
essential for both normal and pathological tissue expansion and provides the nour-
ishment necessary for growth. The role of growth factors which promote angiogen-
esis in pathologic conditions of the breast is now well established. Recently the 
synthetic progestin component of combination estrogen and progestin hormone 
replacement therapy (HRT) has been associated with increased risk of breast cancer 
in postmenopausal women. We demonstrated that progestins induce breast cancer 
cells to produce vascular endothelial growth factor (VEGF), a potent angiogenic 
growth factor that promotes angiogenesis and causes tumors to grow. Unfortunately, 
synthetic antiprogestins are toxic, precluding their use as a means by which to sup-
press the proangiogenic activity of administered progestins. In this chapter we will 
discuss our studies aimed at identifying both naturally occurring and synthetic com-
pounds with antiprogestin and anti-angiogenic activities. We will describe our prog-
ress using agents which block the production of progestin-induced VEGF from 
breast cancer cells and which also have the capacity to both treat and prevent 
progestin- dependent breast disease in animal models. We contend that information 
gained from such studies could facilitate the development of personalized medicine 
which might be used to more precisely and selectively target a specifi c signal trans-
duction pathway essential to angiogenesis, thereby controlling the formation of new 
blood vessels essential for nourishing the rapid growth of hormone-dependent 
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breast tumors. Our studies could also further the concept of “angio-prevention” of 
breast cancer in individuals who are particularly susceptible to progestin-dependent 
disease, for example, women who have mutations in tumor suppressors such as p53 
and Brca-1. By maintaining the angiogenic switch “off” within tumor cells, the 
development of hormone-dependent breast cancers may be prevented.  

7.1         Introduction 

 Developing tumors require a steady supply of nutrients to grow. A primary function 
of angiogenesis, or new blood vessel formation, is to provide nourishment to the 
growing tissue and thereby facilitate tumor development. Since the realization that 
tumor expansion, irrespective of tissue origin, depends on angiogenesis, there has 
been intense interest in the role played in this process by angiogenic growth factors 
[ 1 ,  2 ]. Folkman suggested that by inhibiting angiogenesis within tumor tissue, we 
might treat and perhaps arrest tumor progression [ 3 ]. In the United States alone, 
about 240,000 new cases of breast cancer are detected annually, and approximately 
40,000 women die each year of this deadly disease [ 4 ]. Consequently, therapies 
based on the disruption of angiogenesis could be extremely benefi cial, particularly 
to women taking combination HRT. Endocrine therapy is the choice of treatment for 
those tumors that possess estrogen or progesterone receptors (ER or PR). However, 
many tumors either do not respond to this form of treatment or, after initially 
responding to therapy, go on to develop a population of cells which become resis-
tant and therefore unresponsive to antihormones. Alternative methods of treatment 
include chemotherapy or the use of aromatase inhibitors [ 5 ,  6 ]. It is only recently 
that convincing scientifi c evidence has been acquired proving that breast cancer is 
an angiogenic-dependent disease which is potentially treatable by anti-angiogenic 
therapy [ 7 – 10 ]. Since the presence of both ER and PR affects disease progression, 
it has been suggested that these receptors must control angiogenic factors via their 
respective ligands [ 11 ,  12 ]. Although several angiogenic growth factors have been 
identifi ed in breast cancers, most studies have had as their goal the elucidation of the 
mechanism by which VEGF promotes angiogenesis, since VEGF is also considered 
a molecular therapeutic target by which to treat a number of different types of can-
cer, including breast cancer [ 13 ]. We have examined the role played by ER and PR 
in the control of VEGF production by breast cancer cells and have undertaken the 
identifi cation of naturally occurring and synthetic compounds with the capacity to 
inhibit this process, leading to tumor regression. Since clinical trials in postmeno-
pausal women show that synthetic progestins used in combination HRT are associ-
ated with a higher incidence of breast cancer [ 14 ,  15 ], our recent research endeavors 
have been aimed at controlling the progression of progestin-dependent breast dis-
ease by suppressing angiogenesis. In this context we have described angiogenesis as 
a therapeutic and preventive target with respect to progestin-dependent breast can-
cer [ 16 – 22 ]. In the following pages we will fi rst discuss the role played by proges-
tins in controlling VEGF production by tumor cells, a process which leads to 

S.M. Hyder et al.



125

increased angiogenesis and progestin-dependent in vivo growth of mammary 
tumors. We will go on to describe studies in which we identify a number of syn-
thetic and naturally occurring compounds which could be used therapeutically to 
suppress progestin-dependent VEGF induction by tumor cells, inhibit angiogenesis, 
and thereby promote tumor regression. Studies will also be described that demon-
strate the mechanism by which the aforementioned compounds exert their anti- 
angiogenic effects and which provide a rationale for developing such agents for 
preventing or delaying the development of hormone-dependent breast cancer in 
general and progestin-dependent breast cancer in particular. Since monotherapies 
are generally ineffective in the long term and resistant tumors almost always emerge, 
we will describe a highly effective combination of a small synthetic molecule that 
activates the p53 pathway and a tumor-specifi c vascular disrupting antibody that 
destroys tumor blood vessels, which could be used to control the progression of 
breast disease in a nontoxic fashion.  

7.2     Angiogenesis in Breast Cancer 

 It is now well established that breast cancer is an angiogenic-dependent disease and 
that angiogenesis plays an essential role in breast cancer development, invasion, and 
metastasis [ 10 ,  23 – 26 ]. Even though it has been recognized for decades that breast 
cancer is an endocrine-dependent disease, it is only recently that attention has 
focused on the role of sex steroids in the process of angiogenesis in breast cancer 
cells. Strong evidence that angiogenesis is an essential component of breast cancer 
is afforded by hyperplastic murine breast papillomas [ 27 ] and histologically normal 
lobules adjacent to cancerous breast tissue that possess higher levels of blood ves-
sels [ 28 ], suggesting that angiogenesis precedes transformation of mammary hyper-
plasia to malignancy [ 10 ,  29 ]. In addition, transfection of breast cancer cells with 
angiogenic stimulatory peptides increases tumor growth, invasiveness, and metasta-
sis [ 30 ]. Conversely, transfection of tumor cells with inhibitors of angiogenesis 
decreases growth and metastasis [ 29 ]. It has been suggested that tumor progression 
occurs once a balance is attained that favors angiogenic activators over inhibitors 
and a number of factors have been shown to alter from a preinvasive to an invasive 
status within breast tumors [ 31 ,  32 ]. This could involve either the induction of 
angiogenic growth factors (e.g., VEGF, FGF, MMPs, etc) or loss of inhibitors of 
angiogenesis such as TSP-1,    sVEGF receptors, and TIMPs, etc. Several factors such 
as hypoxia or loss of tumor suppressors and inhibitors of angiogenesis can disrupt 
the angiogenic balance in a tissue leaning toward tumor progression. This is com-
monly referred to as an angiogenic switch and describes the sudden growth of tis-
sues that otherwise remain quiescent for a long time [ 32 – 34 ], as occurs in many 
human breast tumors. Some progress has been made in defi ning the role of sex ste-
roids in the angiogenic switch [ 9 ] though much remains to be investigated in this 
fi eld since modulation of the switch could prove crucial in treating and preventing 
the progression of breast cancer. 
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 It is our contention that an important growth factor with the ability to induce the 
angiogenic switch is VEGF, a key feature of which is the capacity to promote tissue 
permeability, resulting in hyperemia [ 35 ,  36 ]. There is evidence that HRT increases 
breast tissue density; it is possible that some of these effects occur due to estrogen- 
induced hyperemia which arises due to VEGF production, which may become more 
pronounced with the inclusion of progestins [ 37 ]. Indeed, evidence suggests that 
progesterone may have effects on breast vasculature [ 38 ]. Thus it is likely that both 
estrogens and progestins have direct effects on both normal and neoplastic cells as 
well as resident endothelial cells, via their respective receptors. In addition there is 
a possibility that a paracrine mechanism exists that could also arise from the pro-
duction of angiogenic growth factors in breast tissue following hormonal treatment. 
It has been proposed [ 39 ] that such paracrine mechanisms might even facilitate the 
proliferation of tumor cells that lack the capacity to produce their own angiogenic 
growth factors in response to steroid hormones but which respond to VEGF pro-
duced from other cells, since they may retain the necessary cell-surface receptors 
[ 40 ]. Thus, targeting both angiogenic ligand and receptors would seem to be the 
most comprehensive strategy for better controlling tumor proliferation. 

7.2.1     Progestin Regulation of VEGF and Angiogenesis 
in Breast Cancer 

 Given the importance of estrogens and progestins in regulating breast cancer, and 
the clear evidence that angiogenesis plays an important role in disease onset, pro-
gression, and metastasis, a number of studies have been conducted to explain VEGF 
regulation by sex steroids [ 11 ,  41 – 45 ]. Herein, we will discuss how progestins 
induce the production of VEGF in breast cancer cells. Estrogen regulation of VEGF 
in breast cancer has been reviewed elsewhere [ 9 ,  42 ]. 

 The role of endogenous progesterone and synthetic progestins in the develop-
ment and progression of breast cancer has been controversial [ 46 ]. Until recently, 
the conventional view that progestins are terminally differentiative in the endome-
trium was extrapolated to other tissues such as breast [ 47 ], and so progestins were, 
in general, considered antiproliferative and therefore protective against breast can-
cer. Estrogens on the other hand were primarily blamed for inducing the disease. 
There is indeed evidence suggesting that in some cases and at certain dosages, pro-
gestins may reduce the risk of breast cancer [ 48 ]. For example, initial studies showed 
progestins to be antiproliferative in normal human breast cells [ 49 ]. More recently, 
Rajkumar et al. [ 50 ] reported that exogenous estrogen and progesterone reduced the 
incidence of DMBA-induced mammary tumors in genetically engineered mice 
overexpressing Her2/neu. There is also evidence showing that administration of 
exogenous progestins to animals prior to exposure to chemical carcinogens is pro-
tective whereas progestin administration shortly after carcinogen exposure exacer-
bates tumor proliferation and growth [ 16 ,  51 ]. In contrast to those studies describing 
the negative effects of progestins with respect to tumor growth, recent experimental 
and clinical evidence suggests that progestins are indeed responsible for inducing 
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mammary carcinogenesis and promoting the maintenance and progression of breast 
tumors [ 21 ,  52 ]. We fi rst reported that progestins induce the production of VEGF in 
breast cancer cells and hypothesized that VEGF released from tumor cells might 
attract new blood vessels, facilitating tumor growth [ 44 ,  53 ]. Our in vitro observa-
tions that progestins affect expression of the VEGF gene were confi rmed by others 
[ 54 ,  55 ] and further supported in vivo observations when data from the Women’s 
Health Initiative study showed a higher risk of breast cancer in postmenopausal 
women taking combined estrogen-progestin HRT compared with those taking 
estrogen alone or placebo [ 15 ,  56 ]. This report drew attention to the potential dan-
gers of combination HRT and for the fi rst time made the public aware of the possi-
bility that the progestin component of such HRT regimens might be increasing 
breast cancer incidence in postmenopausal women. Furthermore, as well as raising 
the incidence of breast cancer, combined HRT was also shown to increase benign 
breast proliferative lesions, further supporting the notion that a combination of 
estradiol and progestins may promote mammary cancer growth [ 57 ]. Overall, the 
effects of progestins on breast tissue are somewhat complicated since in experimen-
tal systems progestins can elicit either proliferative or antiproliferative effects on 
breast epithelial cell growth depending on the model system used, cell context, spe-
cifi c progestin, dosage, and duration of treatment [ 18 ,  58 ]. The clinical effects of 
progestins are, however, more clearly defi ned, warranting caution when they are 
used as a component of HRT. 

 It is now evident from both in vivo and in vitro studies that progestins stimulate 
the proliferation of both normal and neoplastic mammary gland cells in a variety of 
animal species [ 21 ,  59 – 61 ]. As discussed above, epidemiologic studies and clinical 
trials show there to be a correlation between HRT containing progestins and an ele-
vated risk of breast cancer in postmenopausal women [ 14 ,  56 ,  62 ]. Given that it takes 
only a short time between exposure to progestin-containing HRT and occurrence of 
breast tumors, we initially suggested that progestins promote the growth of already 
existing latent tumor cells in the breast (Fig.  7.1 ). Recent studies suggest that proges-
tins promote tumor growth by creating a microenvironment conducive to tumor 
development and progression [ 58 ,  63 – 66 ]. Moreover, recent studies from our labora-
tory show that progestins promote tumor cell metastasis [ 22 ], a phenomenon that has 
also been reported in humans undergoing combined HRT [ 57 ]. Numerous mecha-
nisms involving conventional nuclear PR and PR-independent pathways, a variety of 
different growth factors, neurotransmitters, and polypeptide hormones have been 
proposed to explain how progestins exert their effects on breast cancer progression 
[ 47 ]. As previously described, we showed in vitro that progestins induce growth fac-
tors such as VEGF, an essential component of angiogenesis which is vital for tumor 
growth [ 44 ,  53 ]. However, studies in the laboratory were confusing and inconclusive 
since initially we were unable to show in vivo proliferation of human breast cancer 
cells, though progestin-dependent breast tumor progression was demonstrated in 
vivo in rodent models [ 18 ,  67 – 69 ]. In order to overcome this obstacle, we developed 
our own model, the fi rst in which progestins were shown to promote the in vivo pro-
gression of human tumor cell xenografts (see Sect.  7.2.2.2 ). Progestin-dependent 
increases in tumor growth in both rodent and human xenografts involved the induc-
tion of VEGF together with increased angiogenesis [ 16 ,  18 ,  21 ]. There is also 
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evidence that progestins regulate a number of intracellular factors that are involved 
in activation and increased expression of several proliferation genes [ 58 ]. Recently, 
Horwitz and Sartorius [ 70 ] reported that exposure to medroxyprogesterone acetate 
(MPA), a progestin commonly used in HRT, increased the stemlike ER-, PR-, and 
CK5+ subpopulation from 2 % to more than 20 %, lending further support to the 
notion that progestins play a role in activating and transforming dormant breast can-
cer stem cells into intermediate subpopulations with the capacity to differentiate into 
breast cancer cells. Schramek et al. [ 64 ] and Gonzalez- Suarez et al. [ 63 ] reported 
that progestin-induced RANKL (receptor activator of nuclear factor kappa-B ligand) 
may also play a signifi cant role in the development of mammary cancer in rodents, 
while Kariagina et al. [ 65 ] described studies showing that estrogen and progesterone 
act synergistically in cells expressing ERα, PRA, and PRB to induce robust prolif-
eration of hormone-dependent mammary cancers through induction of amphiregu-
lin, which in turn activates epidermal growth factor receptor (EGFR). Activated 
EGFR stimulates cell cycle regulatory genes and promotes tumor proliferation 
through mechanisms involving Akt, ERK, and JNK pathways. Progestins also appear 
to prime precancerous cells which then respond more vigorously to growth factors 
[ 58 ]. For example, after being primed with MPA, T47D breast cancer cells become 
highly sensitive to the proliferative effects of epidermal growth factor (EGF) [ 71 ].

   While it appears that progestins promote breast cancer through various mecha-
nisms, their capacity to increase angiogenesis is clearly central to disease progression 
[ 72 ]. Unfortunately, commonly available antiprogestins such as mifepristone are 

  Fig. 7.1    Schematic diagram illustrating potential mechanisms through which progestins promote 
proliferation and growth of occult tumors. Tumor epithelial cells ( red ) containing PR bind proges-
tins such as medroxyprogesterone acetate (MPA) and respond by secreting various factors with 
known tumor proliferative effects, which then act in an autocrine and paracrine manner on 
PR-positive ( red ) and PR-negative ( black ) tumor epithelial cells that express growth factor recep-
tors, stem cells ( gray ), stromal cells, and endothelial cells. The secreted factors include VEGF [ 20 , 
 44 ,  53 ], RANKL [ 63 ,  64 ], and amphiregulin [ 65 ]. Growth factors increase angiogenesis, which 
nourishes proliferating breast tumor cells. Progestins also increase breast cancer metastasis and 
tumor multiplicity in various animal models referred to in the text       

 

S.M. Hyder et al.



129

“promiscuous,” in that they also bind to other receptors and thereby have harmful side 
effects. Such drugs are therefore of limited use in humans. With this in mind we have 
focused our studies on screening and identifying naturally occurring and synthetic 
compounds with antiprogestin activity that are safer and can therefore be used to sup-
press progestin-induced angiogenesis and tumor growth. In subsequent sections, we 
will describe a number of such compounds identifi ed by us and others in recent years 
and detail possible mechanisms by which these agents exert anti-angiogenic and anti-
proliferative effects when used to combat progestin- dependent breast cancer.  

7.2.2     In Vivo Models Used in Our Laboratory to Study 
Progestin-Dependent Breast Cancer 

 Currently, due to variations in morphology, gene-specifi c mutations, response to 
endogenous growth factors, and clinical outcome for breast cancer [ 73 ], several in 
vitro models are used to examine the role of steroid hormones in breast carcinogen-
esis. However, in vitro studies have inherent limitations when it comes to studying 
the effects of progestins on breast cancer [ 74 ]. For example, progestins are gener-
ally antiproliferative in vitro, though why this should be the case when they increase 
breast cancer cell proliferation in vivo remains a mystery. Consequently, animal 
models provide a much clearer insight into the pathologic processes underlying 
progestin-induced breast cancer than in vitro systems. In order to evaluate the anti-
progestin and anti-angiogenic activities of synthetic and naturally occurring com-
pounds, we developed two angiogenesis-dependent in vivo models which faithfully 
recapitulate the in vivo proliferative effects of progestins. These models, which are 
described below, allow us to identify compounds and agents that can be used thera-
peutically or which have the potential to prevent the onset of disease. Examples of 
compounds which have been identifi ed as anti-angiogenic and which have been 
used to treat and prevent progestin-dependent breast cancer are described next. 

7.2.2.1      The Progestin-Accelerated DMBA Rat Mammary Tumor Model 

 The DMBA-induced rat mammary tumor is a popular in vivo model since rat mam-
mary glands possess comparable ductal-lobular organization to that of human breast 
[ 75 ] and exhibit similar patterns of expression and co-localization of PRA and PRB 
isoforms [ 76 ]. Furthermore, DMBA-induced mammary tumors in rats are ER and 
PR positive and hormone-dependent [ 65 ], making this model an appropriate and 
valuable means by which to study progestin-dependent breast cancer. Using it we 
and others have demonstrated that both the natural hormone progesterone and the 
most widely used synthetic progestin, MPA, accelerate the development of mam-
mary tumors [ 16 ,  67 ] in an angiogenesis-dependent manner [ 16 ]. The protocol used 
and the results obtained to support the statement are described in Fig.  7.2 . Briefl y, a 
single oral dose of DMBA (100 mg/kg) given to 45–50-day-old Sprague- Dawley 
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  Fig. 7.2    Progestin-induced progression of mammary tumors in vivo. ( a ) Progestins accelerate the 
development of mammary tumors in DMBA-induced rat model of breast cancer by inducing VEGF. 
General experimental protocol. 45- to 50-day-old Sprague-Dawley rats were treated with DMBA by 
oral gavage (20 mg/kg/rat). MPA pellets (25 mg/60-day release) were implanted 4 weeks after 
DMBA administration. Control animals were implanted with placebo pellets. Following pellet 
implantation, animals were palpated for tumors every other day until termination of the study. In 
specifi c experiments doses of MPA were varied ( b ) and progesterone ( c ,  d ) was administered. ( b ) 
Dose-dependent effects of MPA on mammary tumor development. MPA pellets (0.5, 5, 10, and 
25 mg) were implanted 4 weeks after DMBA treatment. Tumor latency was signifi cantly reduced in 
animals treated with 5, 10, and 25 mg pellets compared with animals given placebo pellets ( P  = 0.010, 
log-rank test). With 0.5 mg MPA pellets tumor latency was 42 days, which was still signifi cantly 
different from placebo ( P  < 0.05, unpaired  t  test). Tumor incidence varied from 60 to 80 % in MPA-
treated groups compared with 20 % in the placebo group. ( c ) Mammary tumors were collected from 
randomly selected animals at 8, 10, and 12 weeks after DMBA treatment.  Upper panel : 
Immunohistochemical staining and analysis showed increased VEGF expression in both MPA- and 
progesterone (P)-treated animals compared with animals given placebo.  Lower panel : Factor VIII 
staining showed more developed blood vessels in MPA and progesterone- treated tumors, suggesting 
promotion of angiogenesis by progestins in these tumors. ( d ) Multivessel density analysis of tumor 
tissue with or without exposure to progestins. A number of blood vessels were signifi cantly higher 
in tumors collected from animals treated with either MPA or progesterone (* P  < 0.04), compared 
with placebo groups (unpaired  t  test). Taken from Benakanakere et al.  Clin Can Res  [ 16 ]         
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rats leads to the development of mammary tumors [ 16 – 18 ]. It is important to note 
that implantation of MPA (or progesterone) pellets following DMBA treatment 
accelerates tumor development and increases tumor multiplicity, which correlates 
with hormone-induced VEGF in mammary tumors [ 16 ]. This concurs with our 
hypothesis that progestins used in HRT promote the growth of occult tumors or 
lesions in the mammary gland, lesions which most likely require the angiogenic 

Fig. 7.2 (continued)
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switch to be triggered by progestin-induced VEGF to facilitate their growth. 
Commonly used antiprogestins such as RU-486 inhibit progestin-driven growth of 
DMBA-induced mammary tumors, proving that PR-dependent mechanisms are 
involved [ 16 ]. Using this model we have been able to study the micro-tumor envi-
ronment and determine specifi c changes in gene expression induced by progestins. 
Furthermore, the DMBA model has allowed us to determine whether any of the 
antiprogestin effects are due to inhibition of progestin-dependent induction of 
angiogenesis in this tissue. In subsequent sections we will present data from studies 
in which we employed this model to evaluate the ability of naturally occurring and 
synthetic compounds to prevent progestin-dependent mammary tumors.

7.2.2.2         The Progestin-Dependent Human Xenograft Model 

 We were the fi rst to develop and employ a novel progestin-dependent model in 
which we inoculated immunodefi cient mice with human breast cancer cells and 
evaluated the therapeutic potential of both naturally occurring and synthetic com-
pounds with antiprogestin activity [ 21 ]. In this model, mice were sequentially 
implanted with estradiol prior to inoculation with human breast cancer cells and 
were subsequently implanted with progestin-containing pellets. Most in vivo studies 
involve inoculation with cells that are incorporated in Matrigel, which contains high 
levels of growth factors. It is therefore possible that previous in vivo studies which 
failed to demonstrate progestin-dependent breast cancer cell proliferation did so due 
to initial induction of maximum proliferation by growth factors present in the 
Matrigel [ 77 ]. In order to avoid this, we injected human breast cancer cells without 
Matrigel and thereby demonstrated a progestin-dependent enhancement of human 
tumor cell proliferation as well as increased metastasis [ 21 ,  22 ]. Using this model we 
found that estradiol supports a short burst of tumor cell growth, followed by regres-
sion and tumor cell senescence and/or apoptosis. Progestin supplementation (natural 
or synthetic) rescues tumor growth, and tumors continue to develop in an angiogen-
esis-dependent manner that is facilitated by increased production of VEGF from 
tumor cells [ 21 ]. This is illustrated in Fig.  7.3 , which shows that MPA- dependent 
xenograft tumor growth is suppressed signifi cantly by the administration of human-
specifi c anti-VEGF antibodies (2C3), confi rming that progestin-induced VEGF 
derived from human breast cancer cells is largely responsible for tumor development 
in this model. PRIMA-1-dependent suppression of tumors will be discussed later. It 
is interesting to note that when progestin pellets are removed, tumor growth is sup-
pressed [ 21 ], providing further evidence that this process is progestin-driven. RU-486 
suppressed progestin-dependent growth, further supporting a PR-dependent mecha-
nism. Our xenograft tumor model thus offers a practical system for evaluating the 
role of progestins in breast cancer development as well as for testing different com-
pounds with potential antiprogestin and anti-angiogenic activity. Furthermore, this 
model provides a means by which to assess progestin- induced metastasis.
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7.3          Compounds with Anti-angiogenic Activity and 
Therapeutic Potential Against Progestin-Dependent 
Breast Cancer 

 Progestin-dependent tumor cell proliferation is dependent upon PR activation and a 
large number of co-modulators, which act in concert within a network of transduction 
pathways, ultimately promoting proliferation and tumor growth. Consequently, PR 
and its associated co-activators are legitimate targets through which to treat and per-
haps prevent cancer [ 78 ]. By targeting transduction mechanisms that are overtly acti-
vated by progestins in ways that are both PR-dependent and PR-independent, 
cancerous cells can be selectively destroyed, while normal cells are spared. The sig-
nal transduction pathway leading to increased angiogenesis clearly plays an impor-
tant role in progestin-mediated tumor growth, and since VEGF is vital to this process, 
VEGF receptors must also be involved. As discussed earlier, commonly available 
synthetic PR antagonists such as mifepristone cause progestin-accelerated tumors to 
regress [ 16 ]; however, due to the adverse side effects of such compounds, their 
extended use in humans is limited. Therefore, we have focused our studies on screen-
ing and identifying nontoxic, naturally occurring, and synthetic compounds which 
possess antiprogestin and/or anti-angiogenic activity. Our ultimate goal is to develop 
such compounds for use in humans as chemotherapeutic and chemopreventive agents. 
Due to low mutation rates in endothelial cells, anti-angiogenic compounds are less 
likely to induce drug resistance than other classes of antitumor agents [ 79 ], making 
their development particularly attractive to cancer researchers. We believe that the 
use of naturally occurring and synthetic antiprogestins with anti- angiogenic proper-
ties, alone or in combination with other chemotherapeutic drugs, is an extremely 
promising option for both long-term chemoprevention and chemotherapy. 

7.3.1     Natural Compounds 

 Compounds that occur naturally are particularly attractive as chemopreventive and 
chemotherapeutic drugs because of their wide availability and lower cytotoxicity, 
which enables chronic consumption without adverse side effects. We initially 
screened and identifi ed several naturally occurring compounds with potential anti-
progestin activity using in vitro assays that specifi cally evaluated the ability of these 
compounds to suppress progestin-induced VEGF secretion from breast cancer cells 
(unpublished data). Subsequently we performed detailed in vitro and in vivo studies 
using two such compounds, curcumin and apigenin, both of which arrested 
progestin- dependent growth of breast cancer cells in vivo by suppressing VEGF and 
angiogenesis. These results are discussed below. 
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7.3.1.1     Curcumin 

 Curcumin, the major yellow coloring pigment from the Indian spice turmeric 
( Curcuma longa ), exhibits antineoplastic [ 80 – 82 ] and anti-angiogenic properties in 
a number of cancer cell lines [ 83 ]. Although curcumin has several molecular targets 
[ 84 ], it clearly suppresses angiogenesis in part through mechanisms that involve the 
down-expression of VEGF. Since previous studies showed curcumin to possess low 
affi nity for both estrogen and progesterone receptors [ 85 ], we sought to determine 
whether it would suppress progestin-dependent tumor growth. Initially we showed 
in vitro that curcumin dose-dependently inhibited MPA-dependent VEGF induction 
in cultured human T47D cells [ 86 ], though interestingly it had no effect on induc-
tion of VEGF by endogenous progesterone or other synthetic progestins, such as 
norethindrone. Since different progestins possess diverse properties with respect to 
potency, clinical effects, and endocrine function [ 87 ], it is possible that the effects 
of curcumin might be specifi c to the 17α-hydroxyprogesterone group of progestins 
alone. Using the DMBA rat model described above (refer to Sect.  7.2.2.1 ), we tested 
the ability of curcumin to inhibit MPA-accelerated DMBA-induced mammary 
tumors and found that while it was unable to delay natural DMBA-induced tumor 
development, curcumin did interrupt further MPA-accelerated tumor growth [ 80 ]. 
Furthermore, curcumin reduced the average number of tumors per tumor-bearing 
animal. Immunohistochemical analysis showed that compared with control ani-
mals, curcumin suppressed VEGF expression within the mammary glands of those 
treated with MPA. Interestingly, curcumin treatment did not affect the expression of 
ERα and ERβ, or PR [ 80 ], suggesting that in this model it exerts its anticancer prop-
erties with little or no effect on ovarian hormone receptors. This would indicate that 
agents targeting ER and PR could be combined with curcumin to combat breast 
cancer, though human clinical studies are required to determine the pharmacoki-
netic characteristics of curcumin alone or in combination with other drugs, as well 
as to establish whether curcumin might be used therapeutically to suppress existing 
progestin-dependent breast tumors.  

7.3.1.2     Apigenin 

 Apigenin is a low molecular weight polyphenolic compound abundantly present in 
common fruits, vegetables, and beverages, which has been shown to possess anti-
mutagenic properties [ 88 ]. Apigenin belongs to a group of ubiquitous compounds 
called fl avonoids and is classifi ed under a subgroup known as fl avones [ 88 ]. Studies 
have shown that apigenin affects several signaling pathways in different cancer cell 
lines, via various mechanisms that include antioxidant and anti-infl ammatory effects 
and induction of apoptosis [ 89 ]. Since apigenin was shown in our initial screening 
to possess antiprogestin activity, we conducted studies to determine its ability to 
suppress progestin-dependent VEGF induction in human breast cancer cells. 
Apigenin suppressed induction of VEGF by progesterone, MPA, and norethindrone, 
suggesting that it may act against a wider range of progestins [ 90 ] than curcumin, 
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whose effects were specifi c to MPA [ 80 ]. We further showed, by semiquantitative 
RT-PCR, that apigenin dose-dependently inhibits progestin-induced VEGF mRNA 
synthesis. It has been reported that apigenin suppresses expression of VEGF through 
mechanisms that involve PI3K/AKT/p70S6K1 and HDM2/p53 pathways [ 91 ]. 

 Having ascertained that apigenin opposes the effects of progestins in vitro, we 
used the DMBA rat model to examine its in vivo potential. Intraperitoneal adminis-
tration of apigenin delayed and decreased signifi cantly the occurrence of MPA- 
accelerated DMBA-induced mammary tumors in a dose-dependent manner [ 92 ]. In 
contrast to earlier studies with curcumin [ 80 ], apigenin did not prevent MPA- 
induced hyperplasia of mammary gland epithelial cells, suggesting that it might 
specifi cally target mammary cancer cells at a particular stage of growth [ 92 ]. 
Disparate effects of apigenin have also been observed between normal prostate cells 
and cancerous cells [ 93 ]. Immunohistochemical analysis of non-tumor mammary 
tissues demonstrated suppression of VEGF by apigenin, suggesting that the fl avo-
noid exerts its anticancer effects at least in part by inhibiting angiogenesis. 

 Further studies using the immunodefi cient mouse model of carcinogenesis in 
which human breast cancer cell growth is sustained by implanted progestin pellets 
[ 20 – 22 ] (Fig.  7.3 ) showed that apigenin suppressed the growth of MPA-dependent 
BT-474 xenograft tumors. Histochemical analysis of tumors collected from 
apigenin- treated animals demonstrated dramatic induction of apoptosis and sup-
pressed VEGF and Her-2/neu expression [ 94 ]. While apigenin did not cause a 
reduction in the number of blood vessels within tumors, it did prevent 

  Fig. 7.3    Progestins rescue growth of regressing xenograft tumors in nude mice. BT-474 cells were 
injected into nude mice implanted with pellets containing 17β-estradiol (1.7 mg/60-day release 
pellet). Tumor growth was monitored, and once tumors began to regress, MPA pellets (10 mg/60- 
day release) were implanted ( Solid arrow ). When mean average tumor volume reached approxi-
mately 100 mm 3 , animals were injected with 2C3, C44 (control IgG), or PRIMA-1 ( broken arrow ). 
Xenograft tumors from animals treated with 2C3 and PRIMA-1 were signifi cantly different 
( P  < 0.05, ANOVA) compared with MPA group. Taken from Liang et al. Cancer Research [ 21 ]       
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MPA- dependent vessel dilation. This suggests that apigenin might arrest tumor 
growth by restricting tumor blood fl ow, though perfusion studies are required to 
confi rm whether or not this is the case. 

 These studies are the fi rst to show that apigenin, a nontoxic, naturally occurring 
component of many fruits and vegetables, has immense potential as a chemopreven-
tive and chemotherapeutic agent against progestin-dependent breast cancer. 
Apigenin exerts its anticancer effects via a number of different mechanisms [ 88 , 
 89 ], and further studies are required, both in vivo and in vitro, to enhance our under-
standing of exactly how the fl avonoid reduces tumor cell viability and arrests tumor 
growth. Additional human clinical studies are necessary to establish the optimum 
dose and route of apigenin administration. However, by virtue of its low intrinsic 
toxicity and capacity to exert its effects specifi cally against cancer cells while not 
affecting normal cells [ 93 ], it is abundantly clear that apigenin is a compound with 
great potential as a chemotherapeutic agent.   

7.3.2     Synthetic Compounds 

 Synthetic antiprogestins have been used to oppose the harmful effects of progestins; 
however, such compounds are toxic due to their cross-reactivity with steroid recep-
tors other than PR. Consequently, it is essential that safe antiprogestins, which are 
specifi c for PR, be developed before clinical studies aimed at arresting breast cancer 
progression through PR antagonism can occur. In the meantime, we have screened 
some synthetic compounds with antiprogestin activity based on their in vitro ability 
to block progestin-dependent VEGF induction [ 21 ]. One such compound is 
PRIMA-1 (p53 reactivation induction of massive apoptosis), which met the criteria 
of inhibiting progestin-dependent VEGF induction in cultured breast cancer cells 
[ 21 ,  95 ]. To complement our in vitro studies, we tested PRIMA-1 extensively in 
vivo for its effectiveness to both treat and prevent progestin-accelerated breast can-
cer and ascertained, specifi cally, its anti-angiogenic activity. Our fi ndings support 
the further investigation of PRIMA-1 as a compound with great potential for con-
trolling progestin-dependent breast cancer, both as a therapeutic and a chemopre-
ventive agent. The salient fi ndings from our studies are described below. 

7.3.2.1     PRIMA-1 

 An estimated 50 % of all breast cancers carry a mutation in the gene-encoding p53 
(mtp53) [ 96 – 98 ]. Mutations in wild-type p53 (wtp53) protein undoubtedly lead to 
cell proliferation and tumor growth due to loss of tumor suppressor activity [ 99 ]. 
Furthermore, mtp53 protein enhances tumor survival and resistance to chemothera-
peutic drugs [ 100 ] as well as leading to increased angiogenesis with subsequent 
tumor growth. Based on our observation that loss of p53 function within breast 
cancer cells facilitates induction of VEGF by progestins via a PR-mediated event 
[ 21 ,  39 ], we hypothesized that by reintroducing wtp53, or converting mtp53 to an 
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active functional form, we might arrest the progression of progestin-dependent dis-
ease. As we predicted, activation of mtp53 or expression of wtp53 blocked progestin- 
stimulated VEGF expression in breast cancer cells. Thus, restoration of normal p53 
function, by converting existing mtp53 to the wild-type conformation, represents a 
novel strategy by which we might prevent angiogenesis and promote tumor apopto-
sis. As mentioned above, PRIMA-1 is a molecule with great anticancer potential by 
virtue of its ability to transform mtp53 to the active conformation [ 95 ]. In our stud-
ies, PRIMA-1 inhibited progestin-induced expression of VEGF in human breast 
cancer cells via mechanisms which included in vitro activation of mtp53 [ 20 ,  95 ]. 
We also found that in vivo, treatment of animals with PRIMA-1 inhibited the growth 
of both progesterone and MPA-dependent BT-474 xenograft tumors [ 21 ]. Two 
weeks of PRIMA-1 treatment reduced xenograft tumor volume by 75 % compared 
with tumors collected from animals treated with vehicle medium. Tumors from 
PRIMA-1-treated animals were generally less vascularized, demonstrating the anti- 
angiogenic properties of the drug (Fig.  7.4 ). In addition to blocking VEGF secre-
tion, it is possible that PRIMA-1also inhibits other pathways essential for tumor 
growth, such as the VEGF-mediated tumor survival pathway [ 19 ].

   Having determined that administration of PRIMA-1 alone represents an 
extremely promising avenue for anticancer therapy, we conducted studies aimed at 
testing its effect when used in combination with other drugs [ 101 ]. In particular, we 
targeted anionic phospholipids on the tumor vasculature surface with a specifi c 
monoclonal antibody, 2aG4, which binds specifi cally to anionic phospholipids in 
the presence of β2-glycoprotein 1 and thereby disrupts the vascular structure of the 
tumor. When given together, PRIMA-1 and 2aG4 effectively suppressed the growth 
of hormone-dependent BT-474 and HCC-1428 xenograft tumors [ 101 ], supporting 
our rationale for using a combination drug regimen which reactivates mtp53 and 
disrupts tumor vasculature. The administration of PRIMA-1 in combination with 
other compounds also has the advantage of arresting tumor growth using drug dos-
ages that cause minimal cytotoxic side effects. In future xenograft studies we will 
use a combination of PRIMA-1 and apigenin since the latter has also been shown to 
activate and stabilize mtp53 [ 102 ]. It is possible that by structural modifi cation, 
analogues of PRIMA-1 might be produced with increased half-lives, which may aid 
delivery to mammary tumors. 

 PRIMA-1 was also effective when used chemotherapeutically to treat DMBA- 
induced tumors in rats, converting mtp53 to wtp53 and inducing apoptosis in tumor 
cells [ 17 ]. In the same series of experiments, PRIMA-1 reduced levels of VEGF in 
tumor tissues and also reduced blood fl ow, as determined by blood perfusion mea-
surements using fl uorescent dye [ 17 ]. Thus, although PRIMA-1 may not lower 
actual blood vessel density within tumor tissue (unlike curcumin, which did decrease 
blood vessel density within progestin-dependent breast tumor tissue; [ 80 ]), it can 
still destroy growing tumors by reducing the nourishment they receive. This is anal-
ogous to reduced blood fl ow in MPA-accelerated tumors in response to apigenin, 
which likely causes blood vessel constriction [ 94 ]. 

 The chemotherapeutic use of PRIMA-1 described above prevented the emer-
gence of new tumors [ 17 ]. In this model new tumors become palpable over time as 
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they develop (tumor multiplicity); however, following the commencement of 
PRIMA-1 treatment, no new tumors were observed. The ability of PRIMA-1 to 
prevent the development of new tumors could have ramifi cations for its use as a 
chemopreventive agent, though this remains to be tested.   

7.3.3     Other Synthetic Compounds with Anti-angiogenic 
Properties 

 The testing of other anti-angiogenic compounds which could be used to arrest in 
vivo progestin-accelerated breast tumor progression is ongoing. Studies are at a 
preliminary stage, though HIF-1α inhibitors appear to be very effective therapeuti-
cally, most likely through their regulation of VEGF. Publication of these fi ndings is 
pending (Carroll et al. in preparation).   

7.4     Mono- and Combination Therapies Using Anti-VEGF 
and Anti-vascular Antibodies to Target Hormone- 
Dependent Breast Cancer 

 As well as exploring the ability of naturally occurring and synthetic small molecular 
weight compounds to treat and prevent hormone-dependent breast cancer, our labo-
ratory has also conducted studies to test the effectiveness of antibodies that target 

  Fig. 7.4    Activator of mutant p53 blocks the progression of progestin-driven breast cancer by reduc-
ing angiogenesis. ( a ) BT-474 cells were injected and tumor growth was monitored. When tumors 
began to regress, progesterone pellets (10 mg) were implanted ( solid arrow ) which resuscitated 
tumor growth as previously described for MPA in Fig.  7.3 . When mean average tumor volume 
reached 100 mm 3 , animals were injected with 50 mg/kg PRIMA-1 twice daily for 2 weeks ( broken 
arrow ). PRIMA-1 treatment signifi cantly decreased tumor volume ( P  < 0.05,  t  test). ( b ) Images of 
representative tumors are shown. ( c ) Immunohistochemical analysis of VEGF and factor VIII in 
progesterone-dependent xenograft tumors exposed to 2C3 or PRIMA-1.  Upper panel : Progesterone 
treatment signifi cantly increases VEGF expression compared with placebo. Progesterone-induced 
VEGF expression is suppressed by exposure to either 2C3 or PRIMA-1.  Lower panel : Factor VIII 
staining shows more highly developed blood vessels in progesterone- treated xenografts but less 
well-developed blood vessels following exposure to either 2C3 or PRIMA-1. In xenografts exposed 
to P+C44 (control antibody), blood vessels were similar to  P  alone. ( d ) Blood vessel density 
was determined by counting factor VIII-positive staining. PRIMA-1 and 2C3 exposed xenografts 
exhibited signifi cantly lower numbers of blood vessels compared with xenografts exposed to either 
 P  alone or P+C44 (** P  < 0.05). *Signifi cantly different from placebo group         
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human VEGF and tumor-specifi c vasculature. A brief summary of our fi ndings is 
provided below. Experiments in which antibodies were used alone will be described, 
as well as combination studies involving the administration of antibodies and other 
synthetic compounds. 

7.4.1     Anti-VEGF Antibody 

 Jain et al. [ 103 ] inhibited tumor vascularization by indirectly targeting released pro-
angiogenic growth factors and subsequently blocking their effects when they bind to 
receptors on cancer or stromal cells. With this in mind we examined the ability of 
anti-VEGF antibodies to prevent the growth of progestin-dependent xenograft 
tumors and found that 2C3, a human VEGF-specifi c antibody which blocks the 
binding of VEGF to VEGF receptor 2, reduced angiogenesis and suppressed tumor 
growth by fourfold (Fig.  7.4 ) [ 21 ]. This provided further evidence that the pro- 
tumorigenic effects of progestins involve mechanisms that include increased expres-
sion of VEGF. Anti-VEGF drugs such as Avastin (bevacizumab) effectively suppress 
angiogenesis and tumor growth [ 104 ]; however, in order to achieve greater effec-
tiveness and increased rates of patient survival, combination therapies involving the 
administration of anti-VEGF drugs, including anti-VEGF antibodies, with other 
chemotherapeutic drugs, are necessary. The prolonged consumption of anti-VEGF 
drugs as monotherapy is risky, since it is associated with an increased possibility of 
selection of hypoxia-resistant cells, leading to tumor relapse [ 105 ]. This might 
explain the failure of anti-VEGF therapy in breast cancer trials [ 106 ,  107 ]. To coun-
ter this, we propose continuous treatment with a combination of anti-VEGF antibod-
ies and other agents such as HIF-1α inhibitors. Such agents might include naturally 
occurring apigenin and curcumin, both of which target HIF-1α transcription factor, 
which regulates a number of survival-specifi c genes within tumor cells [ 108 ].  

7.4.2     Anti-vascular Antibodies 

 We designed a novel strategy by which to combat breast cancer, combining the 
administration of PRIMA-1 with 2aG4, an antibody which specifi cally targets 
tumor vasculature [ 101 ]. Although these studies were not carried out strictly for the 
treatment of progestin-dependent tumors, their outcome indicates that such an 
approach could be an effective way to treat most types of breast cancer. 2aG4 exclu-
sively targets anionic phospholipids that are selectively exposed on tumor blood 
vessels [ 101 ]. We believe strongly that employing a two-pronged attack of 2aG4 
and PRIMA-1, which selectively activates mtp53 to functional p53, will produce 
synergistic effects with regard to antitumor treatment. We confi rmed this hypothesis 
using mtp53-expressing breast cancer cells; a combination of 2aG4 and PRIMA-1 
acted additively to lower tumor incidence, and in some animals tumors were 
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completely eradicated. Tumor blood vessel density and tumor perfusion were both 
reduced as a consequence of such treatment. This approach was, furthermore, non-
toxic to experimental animals. We are extremely optimistic that an approach based 
on this type of therapy could prove to be an extremely useful and safe means by 
which to control the progression of mtp53-containing tumors.   

7.5     Conclusions 

 Clinical data indicates that combined progestin/estrogen HRT increases the risk of 
breast cancer in postmenopausal women, a phenomenon that is supported by a num-
ber of in vivo experimental studies showing that progestins promote tumor develop-
ment. In 1998 we proposed that progesterone and synthetic progestins promote 
angiogenesis by inducing VEGF, a powerful angiogenic growth factor [ 53 ]. Others 
have described different roles for progestins in promoting breast cancer, for exam-
ple, progestin-dependent increases in stemlike cells [ 70 ] and induction of other 
growth factors such as EGF [ 65 ] and RANKL [ 63 ,  64 ]. Thus we now have molecu-
lar targets through which it may be possible to treat progestin-dependent breast 
cancer. We have continued to examine mechanisms involved in progestin-dependent 
angiogenesis, focusing in particular on VEGF, which also plays a role in tumor cell 
survival [ 109 ] and which we contend offers a realistic molecular target for both 
treating and preventing this form of breast cancer. We demonstrated that the small 
molecular weight compound PRIMA-1, which activates mtp53 into its wild-type 
functional form, is thereby able to suppress progestin-dependent VEGF and bring 
about tumor regression. Similarly we showed that the naturally occurring com-
pounds curcumin and apigenin, which also blocked progestin-dependent release of 
VEGF, are potentially good candidates as drugs for treating and preventing 
progestin- dependent breast cancer. Finally, we showed that anti-vascular antibodies 
which target both VEGF and tumor blood vessels also possess considerable poten-
tial as drugs which could be used to control the progression of breast cancers which 
are dependent upon progestins. We provide rationale for using a two-pronged 
approach of anti-vascular antibodies in combination with PRIMA-1, since the two 
could act additively and/or synergistically to reduce tumor burden and have the 
advantage of being nontoxic. Compounds which target other pathways, such as cho-
lesterol biosynthesis, are also good candidates as anticancer agents. As tumors 
grow, cholesterol synthesis is essential for the normal membrane structure of many 
organelles, as well as providing the building block from which steroid hormones are 
synthesized. These studies, while preliminary, are encouraging and suggest that by 
blocking cholesterol production by tumor cells we might open up new possibilities 
for arresting angiogenesis and disrupting tumor growth. 

 The role of angiogenesis in breast cancer is now well recognized. With the recent 
success of clinically administered inhibitors of angiogenesis (see reviews by [ 110 , 
 111 ]), it is feasible that such compounds might be used for “angio-prevention.” In 
such a scenario their use would arrest tumor growth by suppressing the production 
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of hormone-dependent VEGF and triggering the angiogenic switch, which is essen-
tial for small tumors or lesions to progress toward frank tumors. A strategy such as 
this would be especially useful when employed in a “personalized prevention” 
mode for post-menopausal women with mutations in tumor suppressors such as p53 
and Brca1 [ 112 ,  113 ], prior to their being considered for hormone treatment. We are 
optimistic that many of the approaches discussed in this article will help us make 
signifi cant progress against progestin-dependent breast cancer and thereby improve 
the lives of millions of women worldwide.     
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    Abstract     Estrogens are tumor promoters for the mammary gland, due to their abil-
ity to control multiple functions of target cells and to stimulate their proliferation. 
The mechanisms that underlie control of cell proliferation by estrogens are still not 
fully defi ned, despite the important causal relationships between this hormonal 
action, mammary gland carcinogenesis, and breast cancer (BC) progression. 
Estrogens exert their actions in target tissues via two intracellular receptors, ERalpha 
(ERα) and ERbeta (ERβ), that show specifi c, and often antagonist, roles and can be 
found co-expressed in BC where, however, ERα appears to prevail in mediating 
estrogen actions. ERs are ligand-dependent transcription factors of the nuclear 
receptor superfamily of intracellular regulators, and their activity is tightly con-
trolled by hormonal and non-hormonal ligands. This notion led to the design of 
synthetic ER antagonist ligands, including steroidal and nonsteroidal antiestrogens, 
that are effective to inhibit BC cell proliferation and, for this reason, widely used for 
treatment of hormone-responsive tumors. These drugs, however, exhibit side effects 
that limit their effi cacy and use. Studies based on application of genomics and pro-
teomics are revealing new insights on estrogen signaling in BC cells, with the dis-
covery of novel ER partner proteins promising as potential novel drug targets. We 
review here the new insights on ER signaling derived by systematic application of 
interaction proteomics to map and characterize the intracellular network of proteins 
binding to agonist- and/or antagonist-activated ERα in a hormone-responsive human 
BC cell model.  
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8.1         Estrogen Receptors in Breast Cancer 

 Clinical and experimental evidences point to female sex steroid hormones, estrogen 
and progesterone, as important pathogenic factors for breast cancer (BC). Therapies 
aiming at interfering with the actions of estrogen are widely used and effective for 
the prevention and cure of these diseases. Despite the numerous uncertainties sur-
rounding the origins of these tumors, there is substantial evidence indicating that 
BC risk relates to endocrine and reproductive factors: only 5–10 % of these tumors 
can be related to Mendelian inheritance, and their development strongly depends on 
the ovarian and endocrine factors. 

8.1.1     Estrogen Receptors: An Overview of Structural 
and Biological Properties 

 Two mammalian ER subtypes are known as ERα [ 1 ] and ERβ [ 2 ], showing distinct 
but often overlapping cellular and tissue distribution patterns. 17β-estradiol (E2) is 
the natural ER ligand, able to induce a conformational change driving receptor 
dimerization, enhancing its DNA-binding activity and recruitment of co-activator 
and corepressor complexes to chromatin-bound receptor and, thereby, its effects on 
gene transcription [ 3 ,  4 ]. ERs are nuclear proteins with identical modular domain 
organization [ 5 ], comprising an N-terminal domain (A/B domain) encoding a 
ligand-independent transcriptional activation domain termed AF-1; a central domain 
comprising the DNA-binding domain (DBD) and dimerization regions; a hinge 
region (D-domain) with an additional nuclear localization signal; an E-domain, rep-
resenting the ligand-binding domain (LBD); and an F-domain, at the C terminus, 
also believed to be involved in ER dimerization, nuclear translocation, and ligand- 
dependent activation of gene expression [ 3 ,  4 ] (Fig.  8.1 ).

   The expression patterns of the two ER subtypes and their splicing variants are 
partially overlapping. ERα is mainly expressed in the uterus, vagina, and mammary 
glands, while ERβ has been detected in several tissues, including in the male repro-
ductive tracts and the central nervous system [ 6 ]. PCR and sequencing analyses 
identifi ed ERα mRNA splice variants in various cancer cell lines and in breast, 
endometrial, and ovarian cancers (Fig.  8.1 ). Few truncated ERα variant isoforms 
have been examined in tumor samples and correlated with the clinical outcome [ 7 ]. 
It has been observed that truncated ERα variant ERα-36 mediates initial effects of 
estrogen signaling and its expression in the presence of wild-type ERα is associated 
with tamoxifen resistance in BC [ 6 ]. ERα-∆3, lacking exon 3, unlike other isoforms 
is lost in cancer [ 8 ], while truncated isoform ERα-46 has been found signifi cantly 
reduced in tamoxifen-resistant BC cells [ 9 ]. Once expressed in cancer cell lines, 
ERα isoforms modify the transcriptional activity of the wild-type receptor and infl u-
ence cell growth through genomic and non-genomic pathways [ 6 ]. 

 ERβ was identifi ed more recently, in early 1990, and described initially in rat 
prostate and ovary and subsequently in human testis [ 10 ]. Sequencing data [ 11 ] 
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suggest the existence of several ERβ isoforms resulting from alternative splicing 
(Fig.  8.1 ). So far, four ERβ isoforms (ERβ2, ERβ3, ERβ4, and ERβ5) have been 
identifi ed and characterized, with molecular weights of 59, 56, 54, and 53 kDa, 
respectively [ 12 ], and showing clear differences in the AF2 domain (C-terminus) 
and quite different biological activities, with ERβ1 and ERβ2 being able to form 
functional heterodimers with ERα and thereby inhibiting its signaling [ 12 – 14 ]. The 
major differences between ERβ1 and ERβ2 are that the fi rst can counteract ERα 
signaling in two ways: by neutralizing ERα action via heterodimer formation and by 
directly triggering antiproliferative signals. In contrast, ERβ2 acts only according to 

  Fig. 8.1    ERα and ERβ structural organization.  AF-1/2  activation function 1/2,  DBD  DNA-binding 
domain,  LBD  ligand-binding domain. Percentages reported above ERβ represent domain homolo-
gies with respect to ERα. Below the structures of the wild-type receptors are reported receptor 
isoforms identifi ed in BC and mentioned in the text       
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the fi rst mechanism. Recent studies suggest the existence of different ERβ cellular 
pools in the cytoplasm, in the mitochondria, and at the plasma membrane of BC 
cells. Interestingly, cytoplasmic localization of ERβ2, alone or in combination with 
the nuclear form, may predict a signifi cantly worse overall survival in BC, as 
patients with only cytoplasmic ERβ2 suffer for a signifi cantly poorer prognosis 
[ 15 ]. Moreover, nuclear ERβ2 was strongly predictive of a twofold greater response 
to endocrine therapy. At present, several lines of evidence support the presence of 
ERβ within the mitochondria and its association with mitochondrial proteins in BC 
cells [ 16 – 20 ]. Overall, data from cancer cell models and observational studies sug-
gest that ERβ functions as a gatekeeper to inhibit tumor growth and progression. 
Although ERβ seems to be a tumor suppressor in numerous cell models, its role in 
human breast carcinogenesis remains to be elucidated. 

 ERα and ERβ share sequence homology within their DNA-binding and hormone- 
binding domains, but they have different transcriptional regulation properties, sug-
gesting that each of them interacts with unique sets of nuclear factors and plays 
different roles in the control of gene expression [ 20 ,  21 ]. Estrogen-responsive cells 
can be endowed with one or both of these  trans -acting transcription factors. In addi-
tion, estrogen can trigger rapid and transient cellular responses through mechanism(s) 
independent from this “genomic” pathway of steroid receptor action. Such “extra- 
genomic” estrogen effects include cell type-specifi c, rapid, and transient responses of 
signal transduction pathways, induction of intracellular calcium mobilization, and 
activation of membrane ion channels [ 21 ,  22 ]. The genomic and extra-genomic path-
ways do integrate with each other to mediate the mitogenic actions of estrogen, 
including activation of cell cycle controlling gene networks. Both molecular cascades 
are believed to involve multiple components that by functionally or physically inter-
acting with ERs in specifi c cellular compartments (plasma membrane, cytoplasm, 
chromatin, etc.) modulate or/and mediate receptor activity. Despite extensive investi-
gations, the mechanisms by which estrogens exert their growth regulatory actions are 
still not fully defi ned. It is well known that they depend on the presence of ERs and 
correlate with direct transcriptional regulation of cell cycle control genes, including 
proto-oncogenes and D-type cyclin genes [ 23 ,  24 ]. Activation of MAP kinase cas-
cades by estrogens via an interaction of ERα with p Src  has also been described and 
suggested as part of the mechanism for cell cycle regulation by these hormones [ 25 ]. 
Furthermore, ERα was shown to interact also with the regulatory subunit of phospha-
tidylinositol-3-OH-kinase, leading to activation of protein kinase B/Akt and other cel-
lular effectors, while estrogens have been shown to activate membrane ion channels, 
such as the beta subunit of Maxi-K channel hSlo, and PKA in target cells [ 22 ,  24 ].  

8.1.2     Estrogen Receptors Alpha and Beta in Breast Cancer 

 E2 is the ligand for both ERα and ERβ, but its interaction with each receptor results, 
however, in divergent transcriptional effects. The two ER subtypes are both detected 
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in BC cells, but it is unclear how their combined activation by estrogen results in the 
overall cell response to the hormone [ 26 ]. Therefore, there is an increasing interest 
in understanding the biological signifi cance of ERβ expression and whether this 
receptor subtype can be a valuable target for therapy of BC. Estrogen regulation of 
cell proliferation depends on the presence of ERα and -β and correlates with the 
transcriptional control of cell cycle genes [ 23 ,  24 ,  27 ]. The AF-1 and D domains 
represent the regions of highest divergence between ERα and ERβ [ 6 ]. Both recep-
tors bind E2 with high affi nity, but they differ in the affi nities for various compounds 
and in the transcriptional response that will be elicited. For example, tamoxifen is a 
cell- and tissue-specifi c mixed agonist–antagonist for ERα and a pure antagonist for 
ERβ [ 6 ]. The two ERs can recruit the same co-activators or corepressors, but SRC-3 
contributes more to the transcriptional activity of ERα than to that of ERβ [ 28 ]. Both 
ERs enhance transcription of a reporter plasmid containing an  E strogen  R esponse 
 E lement (ERE); ERβ, however, is a weaker activator than ERα and the cellular con-
text determines signifi cant differences in its transcriptional activity [ 29 ]. 

 These results suggest that the pattern of gene regulation by the two receptors is 
only partially overlapping and indeed, genes differentially regulated by ERα and -β 
in BC cells, such as cyclin D1 [ 20 ,  30 ] and fi bulin-1C [ 20 ,  31 ], have been identi-
fi ed. ERα homodimers and ERα/β heterodimers show the same affi nity for DNA 
that is instead lower for ERβ homodimers [ 32 ]. Many studies suggest that ERβ acts 
as a negative modulator of ERα transcriptional activity in BC cells by decreasing 
the cell sensibility to E2 [ 33 ] and acting on ERα-mediated regulation of estrogen 
target gene expression [ 20 ,  34 ], including those involved in DNA replication, cell 
cycle regulation, and proliferation [ 20 ,  35 ,  36 ]. Thus, despite ERα and ERβ being 
both key mediators of the estrogenic signal transduction cascade, they play differ-
ent and/or antagonistic biological roles in BC. Overexpression of ERβ in ERα-
positive BC cells inhibits cell proliferation in response to E2 by increasing the 
expression of antiproliferative genes and by decreasing the expression of 
 proliferative and antiapoptotic ones. This growth-modulatory activity of ERβ 
can explain the better prognostic outcome of BC tumors expressing this receptor 
subtype [ 20 ,  37 – 39 ]. 

 ERs are component of several multiprotein complexes [ 3 ,  4 ]. In human BC cells 
the presence of two distinct peaks of E2 binding has been demonstrated, detectable 
in low-salt extracts upon sucrose gradient centrifugation, containing ERα and ERβ, 
respectively. Differences among several breast samples in the amount of E2 bound 
and the ratio between the two peaks have been verifi ed [ 40 ], suggesting that ERα is 
involved in larger protein complex than ERβ. In addition, it has been reported also 
that ERβ specifi cally interacts with MAP kinase-interacting kinase (Mnk2) [ 40 ] and 
that it is phosphorylated and activated by RSK2. 

 Overall, these observations suggest that different transduction pathways are 
involved in ERα and ERβ activity and that the overall cellular responses (gene 
expression and cell proliferation, for example) to hormone stimulation depend upon 
the presence and relative abundance in the cell of the two receptors and their respec-
tive functional partners.   
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8.2     Estrogen Receptors in Breast Cancer Biology 

 The etiology of BC is thought to involve a complex interplay of genetic, hormonal, 
and environmental factors that infl uence the physiological status of the host. In this 
respect, estrogens are important pathogenic factors in regulating differentiation and 
proliferation of normal as well as transformed breast epithelial cells. 

8.2.1     Open Issues in Estrogen Receptor Actions in Breast 
Cancer Cells 

 Estrogens induce an array of cell type-specifi c responses in target tissues, ranging 
from the expression of specifi c differentiated cellular responses to cell proliferation. 
In BC, a subset of lesions shows a clear mitogenic response to estrogen, while oth-
ers, otherwise indistinguishable, do not. This has long been explained merely by the 
presence or absence of ERs. A signifi cant fraction of BCs are, at the time of diagno-
sis, hormone dependent and responsive to endocrine manipulations aiming at inter-
fering with estrogen actions. When fi rst discovered, this notion led to the introduction 
of the concept that certain biological indicators (in this case the presence of func-
tional estrogen and progesterone receptors in cancer cells) could be used to predict 
the effectiveness of a therapeutic regimen, namely, endocrine therapy. This is still 
valid today, although extensive clinical evidence is indicating that steroid receptor 
status of BC cells is not a suffi cient indicator of their hormone responsiveness. 
Endocrine therapy shows a response rate of 30 % in unselected patients, of about 
50 % in ER-positive patients, and of 60–70 % if ER/PR is positive. There are, thus, 
about 30 % receptor-positive cancers that, despite all predictions, fail to respond to 
hormonal treatments, whereas 5–10 % of patients with receptor-negative tumors 
unexpectedly do respond. Tumor-specifi c estrogen receptor dysfunctions and muta-
tions in their intracellular signaling are thought to contribute to this behavior. No 
substantial evidence in this sense is available to date, as many uncertainties still 
reside on the mechanisms that mediate the control of cell proliferation by estrogen 
in normal and transformed mammary gland cells. 

 More recently, it has become clear that hormone responsiveness is a more com-
plex phenomenon, linked not only to receptor expression but also to other, still 
undefi ned, cellular factors. Such complexity can be observed daily in BC patients 
and is supported by strong biological evidences, the more convincing one being 
represented by the fact that hormone-independent BC cells cannot be transformed 
 in vitro  into hormone-responsive ones simply by the forced expression of exoge-
nous ER. On the other hand, cell type-specifi c effects of estrogens are well known. 
In many target tissues, distinct and specifi c responses can be observed even in very 
similar cell types, all expressing ER to a similar extent. 

 Understanding the nature of the cellular factor(s) acting in concert with ERs to 
foster cell proliferation is a central issue for a better understanding of estrogen 
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actions in BC, whose defi nition is required to elucidate the mechanisms underlying 
the hormone-responsive phenotype and, as a consequence, to devise new ways to 
exploit this phenotype to practical ends.  

8.2.2     Application of “Omics” Technologies to Investigate 
Estrogen Receptor Signaling in Breast Cancer 

 ERs drive gene cascades comprising genes whose transcription is directly regulated 
by their physical interaction with regulatory sites (estrogen response element, ERE) 
in the genome or with signal transduction effectors (non-genomic pathway), as well 
as downstream genes whose expression depends on directly regulated ones. A sig-
nifi cant effort has been made to identify in BC reliable predictors of tumor sensitiv-
ity to different drugs, markers of pharmacological resistance, and, fi nally, new 
therapeutic targets to overcome it. Owing to the advances made in genomic tech-
nologies, our understanding of breast tumorigenesis has signifi cantly evolved in 
recent years [ 41 ,  42 ]. It is clear that, similarly to other cancer types, BC is a complex 
disease involving many mechanisms whose outcome is, among others, an alteration 
of transcriptional regulations. The analyses of the gene expression profi les con-
ducted on BC specimen and cell lines have proven that the ERα-expressing breast 
tumors and cell lines share signifi cant similarities in their transcriptomes. The 
expression profi les of estrogen-responsive gene sets identifi ed  in vitro  have been 
found to be an intrinsic genetic signature of ERα-expressing breast tumors [ 43 ]. 
Gene expression profi ling [ 44 ], proteome [ 45 ,  46 ], miRNome [ 47 – 49 ], and cistrome 
(defi ned as the combination of all target genes and binding sites of a regulatory fac-
tor in a given genome) [ 47 ,  50 ] analyses of ER and some of its cofactors shed light 
on the complexity of ER signaling in BC cells. 

 A number of laboratories focused their  omics  research on ERs in BC with the 
aim of characterizing fundamental processes engaged by ERs that will point to new 
molecular pathways that could be targeted for BC treatments. The fundamental 
aspect to be considered, however, is how to integrate these large sets of data in a 
useful and informative way. This is particularly true when considering that ERs 
activity in the cell involves multiple molecular components that control and/or 
mediate ER functions by functionally or physically interacting with these molecules 
in specifi c cellular compartments, such as the plasma membrane [ 51 ,  52 ], the cyto-
plasm, and chromatin [ 52 – 57 ]. Indeed, it is well known that most effects of estro-
gens are cell type specifi c, and this is achieved by differential expression not only of 
ERs but also of the functional partners of these receptors. These are believed to 
include transcriptional co-regulators, signaling effectors, molecular adapters, and 
other intracellular molecules, which participate in estrogen signal transduction 
within modular multiprotein complexes with different biological activities depend-
ing upon their absolute composition, stoichiometry, and conformation of their com-
ponents [ 58 – 61 ]. Understanding the nature of the cellular proteins acting in concert 
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with ERs to control cell functions is an open issue in BC biology [ 62 – 64 ]. To date, 
this issue has been addressed by the analysis of molecular profi les associated with 
hormone response and disease state in BC cells. Gene expression profi ling [ 65 – 67 ] 
and quantitative proteomics analyses [ 68 ,  69 ] provided a blueprint of the effects of 
estrogen and other ER ligands in hormone-responsive cancer cells, revealing a com-
plexity of ER-induced cellular responses that suggests the likelihood that ERs exist 
in the cell in multiple functional conformations. Indeed, the already-mentioned abil-
ity of ligand-activated ERs to form multiple complexes with key intracellular regu-
latory molecules represents a well-known mechanism to explain their multifaceted 
effects in key processes such as signal transduction and transcriptional regulation.   

8.3     Analysis of the Estrogen Receptor Interactomes 
in Breast Cancer Cells 

 Proteins rarely act in isolation and their interactions are central to all biological func-
tions. The interference with biomolecular networks often leads to disease. Protein–
protein and protein–metabolite interactions have traditionally been studied case by 
case. Recently, powerful analytical technologies have been developed to enable 
large-scale investigations of protein–protein interaction networks, contributing to 
create comprehensive cartography of several pathways relevant to human diseases. 

8.3.1     Interactome Analysis: Technical Aspects and Application 
of Tandem Affi nity Purifi cation to Investigate Estrogen 
Signaling 

 Discovering the molecular partners of a given protein results useful to understand its 
activity. Until few years ago the gold standard to reveal protein–protein interactions 
was considered yeast two-hybrid system [ 70 ], but it held several technical limitations 
due to the possibility to only detect binary interactions and to the high rate of false 
positives and false negatives [ 71 ]. Nevertheless, isolation of multiprotein complexes 
by immunoprecipitation of cell extracts with antibodies against one of the compo-
nents of the complex is limited by the unavailability and poor quality of the antibod-
ies. More recently, tandem affi nity purifi cation (TAP) followed by mass spectrometry 
has been introduced and used for high-throughput detection of multiprotein com-
plexes. This approach allows ex vivo identifi cation of most of the interacting partners 
of a given protein [ 72 ], where identifi cation of the proteins in such samples is made 
possible by the availability of the genome sequence for many organisms. This 
method was fi rstly used in the analysis of protein–protein interaction in yeast [ 73 ] 
and lately employed for several organisms, including mammals [ 74 – 76 ]. 

 The TAP-tagging procedure involves the fusion of the TAP tag to any target 
protein whose corresponding cDNA can be cloned and its introduction into the 
host cell. As shown in Fig.  8.2a , the original TAP tag consists of two IgG-binding 
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domains of  S. aureus  protein A (ProtA) and a calmodulin-binding peptide (CBP) 
separated by a TEV (Tobacco Etch Virus) protease cleavage site [ 77 ]. In order to 
reduce false associations, expression level of the recombinant protein should be 
maintained as close as possible to the natural one. Effi cient protein complexes 

  Fig. 8.2    ER interaction 
proteomics by tandem affi nity 
purifi cation. ( a ) TAP-ER 
fusion proteins used for ER 
interactome mapping.  hERs  
human ERα or ERβ coding 
sequence,  CBP  calmodulin- 
binding peptide,  TEV  peptide 
comprising a TEV protease 
cleavage site,  Pr-A S. aureus  
protein A. ( b ) Schematic 
representation of the different 
steps for ER-binding protein 
purifi cation and identifi cation       
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recovery is achieved under native conditions by two consecutive steps. Typically, 
cell protein extracts are prepared, and the fusion protein and its interactors are 
purifi ed fi rst by incubation with IgG sepharose beads (that bind with high affi nity 
the ProtA domain of the tag); after washing ProtA is cleaved off with the TEV 
protease. The eluate deriving from the fi rst step is then applied onto calmodulin- 
coated beads (that are recognized by the CBP peptide in the presence of Ca 2+ ), 
and following extensive washes, the bound material can be eluted by the addition 
of EGTA that removes Ca 2+  destabilizing the calmodulin-CBP complexes 
(Fig.  8.2b ). The second affi nity step is useful as independent purifi cation tool, 
and it removes also from samples of the TEV protease, thereby helping preserve 
the isolated complexes. The main advantages of this method are the gentle condi-
tions used for complex purifi cation, which maintain the native conformation of 
the proteins and thus their function, while showing a very low background and 
reproducible results. The procedure has some limitations, however, including the 
low yield in mammalian systems, requiring a huge amount of starting material, 
and the possible loss of transient protein interactions due to the long experimen-
tal times. For these reasons, more performing tags are being continuously 
designed [ 78 ]. To date several alternative dual-affi nity tags have been developed, 
using different combinations to improve effectiveness in terms of protein recov-
ery and fl exibility in organisms other than yeast [ 79 – 81 ]. However, the use of the 
traditional TAP tagging still outnumbers the nontraditional ones. This approach 
guarantees reproducibility of the results, and transient interactions could be 
retained by performing single-step purifi cation. Nevertheless, TAP was exten-
sively used for mapping ERα and ERβ interactomes in BC cells [ 82 – 84 ], and the 
TAP protocol described above has been used to investigate systematically the 
multiprotein complexes in which ERs are involved, followed by the analysis of 
the role of their components in the regulation of BC cell functions by agonist- or 
antagonist-bound ERs. Effi cient identifi cation of proteins such as ERs and their 
molecular partners in BC cell extracts was achieved by analysis of purifi ed com-
plexes by nanoLC-MS/MS, a sensitive mass spectrometry technique allowing 
good discrimination among proteins also present at a low relative abundance. 
Briefl y, ER-containing purifi ed complexes were fractionated by SDS-PAGE, sil-
ver stained, gel excised, and subjected to tryptic digestion and mass spectrome-
try. Raw spectra obtained were then processed and submitted to MASCOT 
database for sequence searching.

8.3.2        Estrogen Receptor Alpha Interactomes 

 ERs, like all nuclear receptors, behave dynamically in the cell, and their kinetics 
allows them to rapidly interact with various co-regulatory proteins, chromatin, and 
DNA. Furthermore, ERs distribute to various cell compartments, where the local 
concentration of each partner protein is a key factor in determining the ability of the 
receptor to intervene in specifi c processes. With the aim of specifi cally investigating 

C. Ambrosino et al.



159

the multiprotein complexes in which ERs are involved, tandem affi nity purifi cation 
and mass spectrometry were applied to gain a comprehensive view of ER interac-
tomes in different physiological conditions and cellular compartments of BC cells. 
The datasets obtained, combined with genomics and clinical data, provide a novel 
view of ER-driven molecular pathways involved in estrogen signaling in BC. MCF7 
cells were used to this end, as they are the best-characterized model to investigate 
estrogen effect in hormone-responsive BC. The TAP tag described above was fused 
to the C-terminus of the coding region of human ERα (Fig.  8.1 ), stably transfected 
in MCF-7 cells to generate TAP-ERα-expressing cells [ 82 ] and used to identify 
E2-activated ERα nuclear proteins. Results [ 82 ,  83 ], independently confi rmed with 
a different high-throughput approach [ 85 ], indicate that activated ERα is able to 
associate with a large number of protein components, playing roles in the defi nition 
of receptor-mediated cellular responses and in hormone- dependent ERα-mediated 
gene transcription in BC cells. Focusing on the identifi cation of the nuclear and 
cytoplasmic partners of unliganded ERα, results confi rmed the existence of a fi ne-
tuned ER-dependent mechanism regulating signal transduction within BC cells, 
strongly supporting the hypothesis that key cellular events involving ERα are tightly 
dependent on an array of protein components that specifi cally associate with this 
receptor either in the absence or presence of the hormone (Fig.  8.3 ). Mass spectrom-
etry analysis performed after TAP of cytosolic and nuclear protein extracts sepa-
rately allowed the identifi cation of 72 and 58 receptor partner proteins, respectively. 
The fi rst striking evidence emerging in the dissection of unliganded ERα interac-
tome of BC cells is that only one protein, myosin light chain kinase 2, is associated 
with the receptor in both compartments (Fig.  8.3a ). This strengthens the assumption 
that several co-regulatory networks are differentially implicated in compartment- 
and condition-specifi c ERα activities. Although it has been often reported that in the 
absence of estrogen ERα is mainly sequestered within the cytoplasm in inactive 
complexes with molecular chaperones, other experimental evidences indicate that 
unliganded receptor partially localizes in the nucleus, thereby ensuring basal tran-
scription of target genes [ 86 ,  87 ]. Nevertheless, under estrogen deprivation, both 
cytosolic and nuclear ERα seem to intervene in almost the same biological events, 
although in association with different partners. Functional annotation analysis high-
lights this concept, suggesting that in the absence of hormonal stimulus cytoplasmic 
ERα complexes are mainly involved in regulation of metabolic, biosynthetic, and 
ubiquitination processes (Fig.  8.3b ). This could be exemplifi ed by the presence of 
two factors: Serpin H1 (HSP47) and procollagen- lysine, 2-oxoglutarate 5-dioxy-
genase 3 (PLOD3), the former being involved as a chaperone in the biosynthetic 
pathway of collagen and the latter essential to confer stability to the intermolecular 
collagen cross-links. It has been reported that tumor cell lines derived from meta-
static carcinomas synthesize higher levels of HSP47, suggesting that this protein 
may play an important role in tumor metastasis and could represent a prognostic 
marker in invasive ductal breast carcinoma [ 88 ]. Interestingly, the most representa-
tive nuclear processes involving ERα result to be metabolic, including RNA pro-
cessing (Fig.  8.3c ). These results suggest that in quiescent BC cells ERα is mainly 
involved in activities aiming at cell maintenance. Moreover, the metabolic role of 
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  Fig. 8.3    Functional characterization of unliganded ERα interactomes. ( a ) Venn diagram summa-
rizing the cytosolic (Cyt) and nuclear (Nuc) interactomes of ligand-free ERα mapped in BC cells. 
( b ,  c ) Functional annotation tool according to Gene Ontology analysis of unliganded ERα cyto-
solic ( b ) and nuclear ( c ) proteins       
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ERα has been shown in other cell types to exert a role in insulin and glucose metab-
olism, acting on insulin sensitivity, lipogenesis and lipolysis, insulin secretion, glu-
coneogenesis, and energy homeostasis [ 89 ].

   On the other hand, comparing nuclear ERα interactomes in the absence vs. the 
presence of estrogen, only 27 proteins were found associated with the receptor in both 
conditions (Fig.  8.4a ), including predominantly splicing factors and ribosomal pro-
teins. Additional 237 other proteins are specifi cally involved in estrogen- dependent 

  Fig. 8.4    Liganded and unliganded ERα interactomes in MCF-7 cell nuclei. ( a ) Venn diagram 
summarizing the liganded (+E2) and unliganded (−E2) ERα nuclear interactomes. ( b ) Network 
analysis of liganded ERα nuclear partners according to Molecular Function and Biological Process 
GO terms (analysis and visualization by Cytoscape). Statistically signifi cant ( p  < 0.05) Biological 
Processes represented cell organization and biogenesis ( blue ), actin binding ( light red ), RNA 
processing ( orange ), macromolecule metabolism ( yellow ), macromolecule biosynthesis ( violet ), 
DNA topological change ( gray ), estrogen receptor signaling pathway ( light blue ), and RNA pro-
cessing ( green )       
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signal transduction, RNA processing, and DNA topological changes (Fig.  8.4b ), fur-
ther confi rming the role of ERα in the control of RNA biosynthesis and maturation 
and in β-actin nuclear network [ 83 ].

   These results indicate the existence of common functions of ligand-free and 
E2-activated ERα, among which a central role appears to be played by ribosome 
biogenesis as this pathway, already involving the unliganded receptor, is signifi -
cantly reinforced upon estrogen activation and sees ERα acting on this machinery 
via a pre-constituted, E2-dependent scaffold. Finally, ligand-activated ERα appears 
to act as a bridging factor, linking transcription with RNA splicing and processing, 
cell cycle, and ribosome biogenesis in hormone-stimulated cells. In this network, a 
major role is played by β-actin and its interacting proteins (arp2 and arp3, fl ightless 
I, gelsolin, myosin 1c, etc.) that are all recruited to a complex upon hormonal stimu-
lation. Concerning the connection between ERα and β-actin, several studies under-
lined that these two factors tightly cooperate in modulating cell activities in BC. For 
example, it has been demonstrated that ERα transcriptional activity is fi nely modu-
lated by Rho/actin/MKL1 pathway, via a specifi c association of the co-regulator 
MKL1 with either G-actin (unliganded ERα) or F-actin (E2-bound ERα). In par-
ticular, when MKL1 is sequestered in an inactive form by unpolymerized actin, 
ERα transcriptional activity relies on the AF-1 region of the receptor. Activation of 
MKL1, causing polymeric actin accumulation, allows ERα to act through its AF-2, 
and as a consequence, ERα is impeded to effi ciently  trans -activate target genes. 
This may suppress the protective role exerted by ERα on tumor progression and 
invasiveness, correlating with disruption of intercellular adhesion, migration, and 
metastasis [ 90 ]. It is also known that both ERα and nuclear β-actin regulate multiple 
steps of gene transcription [ 85 ,  91 ]. It is possible that the two proteins cooperate 
with each other in performing these activities in hormone-stimulated cells, in par-
ticular when ER binding to the genome occurs at a distance from the target gene 
promoter. The interaction of ERα with β-actin could be part of a mechanism for 
dynamic remodeling of multiprotein complexes during estrogen-regulated tran-
scription [ 86 ] as well as for long-range effects of ERα on chromatin and reposition-
ing of ER-responsive genes within the nucleus [ 53 ]. It has been also proposed that 
β-actin and actin-related proteins are required for the activity of SWI/SNF and for a 
stable association of remodeling complexes with chromatin. Considering the broad-
ness of SWI/SNF complex, multiple protein–protein interactions, including actin- 
related proteins such as fl ightless, might be involved in its association with the 
transcription initiation complex assembled by ERα [ 92 ]. On the other hand, the 
interaction between ERα, β-actin, nucleophosmin, and ribosomal proteins indicates 
a direct molecular link between the mitogenic action of estrogen and ribosome bio-
genesis in BC cells. This possibility is suggested also by the known role of β-actin 
in ribosome biogenesis and maturation [ 93 ]. In conclusion, the β-actin network rep-
resents a bridging factor between ERα and the factors involved in splicing, ribonu-
cleoparticles formation, and ribosome assembly and may play a key role in 
estrogen-dependent signaling in BC cells.  
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8.3.3     Effects of Estrogen Receptor Beta Expression on 
Estrogen Receptor Alpha Interactome 

 As described above, ERα and ERβ can elicit divergent transcriptional responses due 
to differences in their mechanism of action. Several experimental evidences point to 
the ability of the two receptor subtypes to regulate a variety of common and different 
genes in BC cells and suggest that the divergent transcriptional responses to these 
ligand-dependent transcription factors can be due to multiple cellular factors that can 
affect ER-mediated signal transduction pathway. Among these factors, a key role 
can be assigned to the property of ERs to be involved in modular multiprotein com-
plexes that include specifi c transcriptional co-regulators, signaling effectors, molec-
ular adapters, and other intracellular molecules that participate in estrogen signal 
transduction by physically interacting with the ERs and, thereby, convey them onto 
different biological activities, depending upon their absolute composition, stoichi-
ometry, and conformation of their components. ERs are able to regulate the activity 
of each other by forming heterodimers both  in vitro  and  in vivo , thereby infl uencing 
receptor-DNA interactions and, consequently, their effects on the genome. Indeed, 
ERβ appears to act as a dominant-negative regulator of estrogen signaling when co-
expressed with ERα, opposing ERα-mediated transcription. This evidence suggested 
to investigate the molecular mechanisms sustaining ERβ interference upon ERα 
activity in BC cells by interactome analysis, based on the observation that E2 stimu-
lation of ERβ-expressing MCF-7 cells yielded mainly ERα/β heterodimers, that as 
expected represent the predominant form of ERα under these conditions. 

 Using tandem affi nity purifi cation coupled to mass spectrometry, ERβ interac-
tome was mapped and characterized in estrogen-responsive BC cells [ 84 ] and then 
compared to ERα interactome identifi ed in ERβ cells [ 92 ]. In-depth computational 
analysis by protein–protein interaction topology and dissection of the two datasets 
through subcluster classifi cation [ 94 ] showed that among the 264 proteins associated 
with ligand-activated ERα and 303 bound to ERα/β heterodimers in MCF-7 cells, 
only 70 were in common. Most of the interactors (194 and 234 specifi cally associ-
ated with ERα and ERβ, respectively) are selectively co-purifi ed under the two con-
ditions investigated, confi rming that interaction proteomics is a useful approach to 
investigate ERβ on ERα molecular functions in the same cellular background. The 
results obtained by considering overrepresented Gene Ontology terms on the three 
lists of interactors identifi ed (ERα specifi c, ERβ specifi c, and common to both recep-
tors) show several differences (summarized in Fig.  8.5 ), pointing to biological pro-
cesses converging on either ERα (ERα only), ERβ (ERβ only), or both receptors 
(ERα and ERβ). In particular, considering the Gene Ontology Biological Process 
(BP) terms found enriched (Fig.  8.5 ), ERα molecular partners are involved in RNA 
processing/splicing, chromosome organization and biogenesis, chromatin modifi ca-
tion, and in regulation of actin polymerization and depolymerization and capping. 
Moreover, terms associated with transcriptional regulation, including mRNA tran-
scription initiation and tRNA and rRNA transcription, and transcription factor 
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  Fig. 8.5    Functional differences between ERα, ERβ, and ERα + β interactomes of estrogen- 
stimulated MCF-7 cells. HeatMap showing signifi cant differences ( p  < 0.05) in Biological Process 
Gene Ontology terms associated to ERα-specifi c, ERβ-specifi c, and ERα/ERβ complex-specifi c 
interacting proteins reporting, for each dataset, the percentage of interactors belonging to the indi-
cated functional category. Enrichment was calculated in all cases with respect to all genes expressed 
in MCF-7 cells, detected by oligonucleotide microarray hybridization       
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binding are found signifi cantly represented among ERβ interactors. On the other 
hand, the two interactomes share similar functional annotations, in particular those 
referred to actin and ribosome organization and biogenesis and the generic category 
represented by estrogen signaling pathway. Considering instead the differences in 
composition of the two interaction networks, the one relative to ERβ comprises sev-
eral known transcriptional co-regulators, such as SRC3 [ 95 ], TRIM24 [ 96 ], and 
MED1 [ 97 ], as well as proteins directly involved in the regulation of cell growth and 
apoptosis, like GTPBP4 and PES, that are known to be upregulated in BC compared 
to normal mammary epithelium [ 98 ,  99 ]. The association of ERβ with these factors 
could affect their ability to promote p53 downregulation and/or cyclin D1 upregula-
tion, causing signifi cant effects on cell survival and proliferation, in agreement with 
the established role of ERβ on these processes. GNL2, GNL3, mitochondrial pro-
apoptotic protein MRPS29 [ 100 ], and BCLAF1, a transcriptional repressor localized 
to the nuclear envelope and able to induce cellular death [ 101 ], were also found 
associated to ERβ. Among the proteins found in common between the two networks, 
it is worth mentioning again β-actin (ACTB) for its role in liganded estrogen nuclear 
signaling [ 53 ,  82 ,  102 ], regulation of target gene activity, chromatin remodeling, and 
ribosome biogenesis. However, as shown in Table  8.1 , co-expression of both ERs in 
the cell appears to interfere with recruitment of some ERα/β-actin interacting pro-
teins such as DDX5, NPM1, and ACTR2. Concerning DDX5, a well-known ERα-
interacting partner, recent evidences suggested that loss of this protein implies 
reorganization of actin cytoskeleton and reduction of cellular proliferation [ 103 ], 
results that relate to inhibition by ERβ of estrogen target genes activity mediated by 
ERα in BC cells, as shown, for example, in the case of the pS2 promoter [ 20 ,  104 ] 
and for nuclear processing of pri-miR-23b, -27b, and -24-1 [ 104 ].

   Table 8.1    Recruitment of β-actin and actin-interacting proteins to ERα or ERβ following BC cell 
stimulation with 17β-estradiol (E2)   

 Swiss prot 
protein ID  Protein name  Gene name 

 Detection in 
purifi ed ER samples 

 ERα  ERβ 

 P03372  Estrogen receptor alpha  ESR1  +  + 
 P60709  Actin, cytoplasmic 1  ACTB  +  + 
 O00159  Myosin-Ic  MYO1C  +  + 
 P11142  Heat shock cognate 71 kDa protein  HSPA8  +  + 
 P06396  Gelsolin  GSN  +  + 
 P17844  Probable ATP-dependent RNA helicase DDX5  DDX5  +  − 
 P06748  Nucleophosmin  NPM1  +  − 
 P61160  Actin-related protein 2  ACTR2  +  − 
 P61158  Actin-related protein 3  ACTR3  +  + 

  (+) present, (−) absent  
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8.3.4         Effects of Antiestrogens on Estrogen Receptor Alpha 
Interactome 

 Estrogens’ role in BC led to the development of endocrine therapies against these 
tumors, based on antiestrogenic compounds able to compete with the estrogen and 
impinge their biological activities. These are synthetic compounds that antagonize 
hormone-induced proliferation and ERα-target gene expression in mammary tumor 
cells. Depending upon their functional effects, it is possible to distinguish two major 
classes of antiestrogens. The “Selective Estrogen Receptor Modulators” (SERMs) 
are compounds able to act both as ERα agonists and antagonists (partial antago-
nists), depending on the cellular and promoter context as well as on the targeted ER 
subtype. The “Selective Estrogen Receptor Downregulators” (SERDs), instead, 
completely block the activity of estradiol and are thus considered  pure  antiestrogens 
(full antagonists). SERDs increase receptor turnover and interfere with its nuclear 
localization, causing a signifi cant reduction of ER concentration in treated cells 
both in vitro and in vivo. 

 The fi rst antiestrogen introduced in the clinical practice is Tamoxifen that is, 
thus, the SERM prototype [ 105 ,  106 ]. Tamoxifen is a nonsteroidal antiestrogen that 
antagonizes the action of estrogen and is effective in both BC treatment [ 107 ,  108 ] 
and prevention [ 109 ]. Concerns have been raised, however, regarding the potential 
estrogenic effects of this drug on normal tissues, as Tamoxifen acts as estrogen 
agonist on bone, blood lipids, and endometrium [ 110 ], increasing the risk of endo-
metrial cancer and thrombotic events [ 109 ,  111 ]. 

 Raloxifene, a second-generation SERM, is a nonsteroidal antiestrogen produced 
by altering the triphenylethylene ring structure of tamoxifen to get a benzothio-
phene “fi xed ring” structure. Originally it was not developed as an antiestrogen for 
BC [ 112 ] but to provide a new hormone replacement therapy to prevent osteoporo-
sis and, as a benefi cial side effect, to decrease the incidence of endometrial and 
mammary cancer in the general population [ 113 ]. Raloxifene is a potent antiestro-
gen and exhibits estrogen-like effects in bone cells, preserving the bone mineral 
density, but not in uterine cells. Furthermore it appears to cause a decrease in circu-
lating cholesterol [ 114 ]. 

 Fulvestrant, also known as ICI 182,780, the SERD prototype, is a steroidal mol-
ecule devoid of estrogen-like activity. It was synthesized in order to treat patients 
with hormone-sensitive breast tumors that, after fi rst-line therapy with Tamoxifen, 
developed resistance to the drug and the negative side effects of the SERM in the 
gynecological tract [ 115 ]. Indeed, proliferation of Tamoxifen-resistant BC cell lines 
can be inhibited by Fulvestrant [ 116 ,  117 ], and clinical evidence suggests that the 
absence of an agonist activity of this SERD may indeed lead to overcoming the 
resistance which may develop following long-term therapy with Tamoxifen. 

 After binding to ERα, antiestrogens induce conformational changes of the recep-
tor that are different from those induced by the endogenous agonist E2 and peculiar 
of each antiestrogen compound. More precisely, the different antagonists induce 
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diverse conformational changes of ERα and, consequently, differences in the exter-
nal conformation of the receptor, in particular on the domains that interact with its 
molecular partners and the spatial reorganization of the receptor structure that 
occurs dependent thus strictly on the nature of the ligand [ 118 ]. This remodeling 
drives, or prevents, binding of specifi c co-regulatory proteins to ERα. The complex 
of all proteins that interact with the receptor, either directly or indirectly, makes up 
the receptor interactome [ 119 ] that, in turn, infl uences the nature of the biological 
response triggered by the ligand. Furthermore, the relative balance in a given co- 
activator and corepressor proteins also determines the response to each particular 
ligand. As stated above, the mitogenic effects of estrogen on the mammary gland 
are known to be mainly mediated by ERα, and this liaison led initially to the devel-
opment of antiestrogen-based therapies that aims at inhibiting estrogen signaling 
via ERα.    However, clinical experience has highlighted that approximately 30 % of 
receptor-positive neoplasms are not responsive to these therapies. Taken together, 
these facts indicate that a likely explanation for the lack of responsiveness of certain 
ERα-positive BCs could depend upon the lack of, or mutation, one or more compo-
nents of the receptor interactome. As a consequence, knowing the nature and com-
position of each antiestrogen- dependent interactomes of BC cells is a logical 
approach to be able to decipher the molecular mechanisms of natural and acquired 
BC cell resistance to antihormone- based therapies. A recent study on MCF-7 cells 
treated with each of the three antiestrogen compounds describe above indeed showed 
very signifi cant quantitative and qualitative differences of ERα nuclear interactome 
that relate to the nature of the ligand, i.e., E2, Tamoxifen, Raloxifene, or ICI 182,780 
[ 120 ]. As exemplifi ed in Table  8.2  for some actin-associated proteins known to be 
functionally important interactors of ERα in the presence of E2 [ 82 – 84 ], cell stimu-
lation with Tamoxifen results in the recruitment of different complexes on the recep-
tor and, therefore, on a different functional output of the complex.

   In conclusion, the interactomics results reviewed here provide a fi rst comprehen-
sive view of the regulatory networks of hormone-responsive BC cells involving 
directly ERα and ERβ via protein–protein interactions occurring both in the nuclear 
and extranuclear compartments of the cell. These data represent a tool that can be 
exploited to elucidate estrogen signaling and its dysfunctions in BC.      

   Table 8.2    Differences in association of β-actin and its interacting proteins with ERα upon 
treatment of BC cells with a receptor agonist (17β-estradiol; E2) or antagonist (tamoxifen, TAM)   

 Swiss prot 
protein ID  Protein name 

 Gene 
name 

 Relative abundance 

 E2  TAM 

 P03372  Estrogen receptor alpha  ESR1  +++  +++ 
 P60709  Actin, cytoplasmic 1  ACTB  +++  + 
 B2RTY4  Myosin isoforms  MYO  +++  + 
 P06748  Nucleophosmin  NPM1  ++  − 
 P17844  Probable ATP-dependent RNA helicase DDX5  DDX5  ++  − 

  (+++) high, (++) medium, (+) low, (−) undetected  
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    Abstract     Normal developmental pathways that determine cell fate, migration, and 
proliferative potential become reactivated in cancer to promote the most devastating 
aspect of the disease, namely, metastasis to new sites. However, unlike their func-
tion in the delimited process of normal growth and differentiation, developmental 
pathways in the context of metastatic cancer support an aberrant and unlimited mor-
phogenic program. Understanding how specifi c morphogenic pathways function in 
normal development and how they become deregulated in cancer may provide 
insight into new therapeutic opportunities to limit cancer spread. Adding complex-
ity, however, such developmental pathways do not function solely through linear, 
cell autonomous programs but rather as dynamic, iterative processes between cells 
and their microenvironment. Therefore, comprehensive strategies to treat cancer 
and limit recurrence and metastasis must consider the ever-changing, reciprocal 
developmental relationship of cancer cells with their microenvironment. One impor-
tant developmental pathway that shapes the interdependent evolution of breast can-
cer cells and their microenvironment is signaling by the embryonic morphogen 
Nodal, a member of the TGF-β family and a promising, new therapeutic target. 
Herein we review the signifi cance of bidirectional signaling with the microenviron-
ment in tumor progression and the distorted recapitulation of normal developmental 
programs that promote tumor aggression. Further, this chapter examines the reemer-
gence of Nodal signaling during breast cancer growth and, fi nally, the therapeutic 
potential of targeting cancer cell–microenvironment interactions in general, and 
particularly Nodal signaling, to reprogram these relationships and promote a more 
benign developmental course in malignant breast cancer.  

    Chapter 9   
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     Researchers have long noted that certain aspects of cancer resemble a distorted 
recapitulation of embryogenesis. Virchow famously fi rst proposed that cancer might 
arise from persistent embryonic-like cells in the body. He presciently went on to 
describe the interconnectedness of biological processes and the importance of con-
text in shaping cellular outcomes:

  “ Every animal presents itself as the sum of vital unities , every one of which manifests all 
the characteristics of life.... Hence it follows that the structural composition of a body of 
considerable size, a so-called individual, always represents a kind of social arrangement of 
parts, an arrangement of a social kind, in which a number of individual existences are mutu-
ally dependent, but in such a way, that every element has its own special action, and, even 
though it derives its stimulus to activity from other parts, yet alone effects the actual perfor-
mance of its duties.” [ 1 ] 

   The “vital unities” he refers to are cells, and the “social arrangement” of cells 
foreshadows our current concept of the microenvironment. It was unclear in the 
1850s, however, what factors might upset this social arrangement and allow cancer 
to develop. 

 Since that time, specifi c genetic mutations have been shown to perturb cellular 
homeostasis and cause cancer. Initially these discoveries led to the hope that target-
ing mutant proteins therapeutically could eradicate the disease and cure cancer 
patients; however, in most cases, and for breast cancer patients in particular, cancer 
cells become resistant to therapy and tumors recur, often with more aggressive char-
acteristics. The ability of cancer cells to evolve and escape targeted treatments has 
refocused attention on the broader developmental process of cancer and the micro-
environmental changes that might cooperate with genetic mutations to facilitate 
tumor progression and recurrence. Recent studies and advances in stem cell biology 
have revealed the importance of microenvironmental and epigenetic factors in shap-
ing cancer development and suggest a need to address the whole developmental 
process of cancer in order to provide better outcomes for patients [ 2 ]. 

 Similar to a normal developmental process, breast cancer growth may be hierar-
chically organized, with a small number of stem-like cells able to self-renew and 
fuel the growth of a large, complex, heterogeneous population of bulk tumor cells 
[ 3 ]. This hierarchy of tumor cells depends upon an equally complex and heteroge-
neous microenvironment for signals to maintain potency and viability and to dif-
ferentiate and to respond to changes in the tumor context [ 4 ]. Far from a model 
where genetic mutations can be considered the solitary force of malignant transfor-
mation, current studies suggest that a reciprocal developmental relationship grows 
between cancer cells and their environment, each driving changes in the other and 
culminating in tumor progression as a developmental process but, importantly, one 
that seems to lack a regulated developmental endpoint. 

 The evolution of the tumor–microenvironment relationship ultimately rests on 
the remarkable plasticity of both cell types in adapting to changing stimuli. This 
extreme plasticity underlies the notorious ability of cancer cells to metastasize and 
evade treatment but may also hint at therapeutic opportunities to harness tumor cell 
developmental plasticity and “reprogram” tumor cells to a more limited, benign 
phenotype. Intriguingly, and reminiscent of Virchow’s prediction, the plastic, 
aggressive phenotype of cancer may derive, in part, from the reemergence of 

G. Kirsammer and M.J.C. Hendrix



177

embryonic signaling pathways in tumor cells. Moreover, studies suggest that the 
embryonic microenvironment, which restrains and directs the potency of embryonic 
stem (ES) cells, may hold clues to limiting or redirecting plasticity in cancer cells as 
well. 

9.1     Breast Tumor Heterogeneity and the Microenvironment 

 Developing breast tumors are extraordinarily complex, harboring multiple evolving 
clones and genotypes and thereby complicating the development of targeted therapies. 
Additionally, the cells within a given clone are apparently not equal in their ability to 
instigate and maintain tumor growth. The cancer stem cell hypothesis suggests that a 
small population of the so-called cancer stem cells (CSCs) or tumor-initiating cells 
may harbor these functions and might also be responsible for both tumor metastasis 
and recurrence after treatment [ 5 ]. Whether or not CSCs can be considered true stem 
cells is currently debated, but regardless of how they may be named, targeting the 
malignant cells that are able to persist and repopulate cancerous tumors after therapy 
is obviously an important priority for patients. Unfortunately, identifying these cells 
has proven challenging. Adding complexity are reports that CSCs may not be pheno-
typically stable in some tumor types and that CSC behavior appears to be infl uenced 
by microenvironmental context, including methods used to isolate and culture them 
[ 6 ]. Therefore, a study of CSCs and their development requires improved understand-
ing of the environmental factors that affect their phenotype and function. 

 Perhaps as complex as the tumor itself, the developing microenvironment of 
breast tumors supports tumor growth with a variety of essential functions and cell 
types. Importantly, the microenvironment provides a niche for maintaining breast 
cancer stem cells (BCSCs) and directing their functions. As BCSCs are thought to be 
responsible for the most devastating aspects of cancer progression, how these cells 
take instructions from their environment to self-renew, divide, adapt, and metastasize 
is under intense investigation. What is clear, however, is that bidirectional codevelop-
ment of cancer cells and their microenvironment is as complex as any other develop-
mental process, requiring sensitivity to environmental cues as well as developmental 
plasticity to respond to such stimuli and activate downstream phenotypic changes.  

9.2     Breast Cancer Stem Cells 

 Following advances in stem cell biology and the isolation of stem cells in the hema-
topoietic system, Bonnet and Dick fi rst demonstrated that cancer growth, like hema-
topoiesis, might occur as a stem cell-driven hierarchy of cell phenotypes [ 7 ]. In 
these studies, human leukemia cells were sorted into pools by the expression of the 
CD34 and CD38 cell surface antigens and transplanted into immunocompromised 
mice. It was shown that a fraction of human acute myeloid leukemia cells, defi ned 
by their CD34+/CD38− cell surface phenotype, harbor increased stem cell-like 
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behavior and concentrated ability to establish and maintain leukemia in mice. 
Leukemia cells in the other pools were greatly diminished in their tumorigenicity, 
suggesting that all cancer cells may not be equal in aggressive potential and that 
tumor “stem cells” might be a high-priority therapeutic target. 

 In the subsequent search for solid tumor stem cells, Al-Hajj and colleagues dem-
onstrated that human breast cancer may also be propagated through a small propor-
tion of tumor cells, which are uniquely enriched in tumor-forming ability and 
defi ned by the CD24 low /CD44 high  cell surface profi le [ 5 ]. Other studies, using mark-
ers such as EpCAM and ALDH1, have also demonstrated enrichment for tumor- 
forming ability in a subset of cancer cells [ 8 ,  9 ]. Importantly, while BCSCs are 
identifi ed by their cell surface profi le, the BCSC phenotype is sensitive to growth 
conditions and must, therefore, be functionally defi ned by the ability to form spe-
cifi c colonies in culture and to generate tumors in immunocompromised mice, 
either by mammary fat pad xenograft or intravenous injection. 

 Indeed, the microenvironment has a strong effect on CSC phenotype, but how 
this phenotype arises and in what original cell type are unresolved questions. The 
hypothesis that CSCs derive from normal tissue stem cells is attractive for several 
reasons. First, stem cells already harbor extensive self-renewal capacity and the 
ability to produce diverse progeny, two defi nitive characteristics of tumor stem 
cells. Tissue stem cells are the most plastic cells in a tissue, with the lowest level of 
epigenetic programming and, arguably, the lowest threshold to activation by inter-
nal events or extracellular stimuli. Additionally, normal stem cells occupy the stem 
cell niche, where they receive environmental cues for stem cell function and potency. 
A cell undergoing transformation at this site would be well poised to maintain a 
stem cell phenotype. Alternatively, it remains possible that more differentiated cells 
may acquire stem-like character through genetic or epigenetic changes to give rise 
to cancer. In either case, identifi cation of the cell of origin in breast cancer has 
become more achievable with a better understanding of the features of mammary 
stem cells and how they develop stem cell features. 

 Subsequent to the identifi cation of BCSCs, normal human mammary stem cells 
have successfully been enriched based on the CD49+/Epcam lo     fraction and are 
defi ned by their ability to form nonadherent mammospheres in culture and mam-
mary ductal structures in a cleared mouse mammary fat pat [ 10 ]. Identifi cation of 
normal mammary stem cells and progenitors has allowed for breast cancer cell of 
origin studies in the mouse, which suggest that indeed mammary stem and progeni-
tor cells likely sustain the changes that give rise to malignancy [ 11 ]. Furthermore, 
while transformed stem and progenitor cells may retain some of their original char-
acter, they demonstrate phenotypic plasticity and may not resemble their cell of 
origin. For example, several studies suggest that the mammary luminal progenitor 
population may give rise to both luminal- and basal-like breast carcinomas [ 12 ,  13 ]. 

 Recent evidence suggests that transformed cells in the mammary gland may 
achieve phenotypic plasticity and gain stem cell character by accessing the pro-
grams used by fetal mammary stem cells. These embryonic counterparts to adult 
mammary stem cells remain bipotential for basal and luminal lineages until shortly 
after birth and harbor a transcriptional program that is distinct from that of adult 
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mammary stem cells. After E15.5, fetal mammary stem cells have been shown to 
undergo dramatic expansion, concurrent with changes in the microenvironmental 
context, as the fetal mammary epithelium undergoes EMT and begins to invade the 
surrounding mesenchyme and ingress into the adjacent fat pad [ 14 ,  15 ]. Interestingly, 
the process of EMT itself has been shown to produce stem cell characteristics in 
mammary epithelium and breast cancer cell lines, and it has been suggested that the 
embryonic mammary stromal cues which produce EMT and invasion may simulta-
neously generate robust expansion of the fetal mammary stem cell compartment 
[ 15 – 17 ]. Determining the molecular mechanisms used to generate fetal mammary 
stem cells may provide insight as to whether these same pathways are accessed to 
generate BCSCs. Transcriptional profi ling of fetal mammary stem cells and the sur-
rounding stroma has revealed overlap with different subtypes of breast cancer which 
is distinct from the adult mammary stem cell profi le, including coexpression of 
luminal and myoepithelial markers with vimentin, which is not typically observed 
in the adult mammary gland, but does accompany the transition to aggressive undif-
ferentiated cancers [ 15 ]. Indeed, forced coexpression of keratins 8 and 18 with 
vimentin has been shown to cause increased proliferation and motility of breast 
cancer cell lines in vitro and lends support to the hypothesis that reactivation of the 
EMT program in breast cancer cells may resurrect embryonic pathways used to 
confer stem cell character and plasticity [ 18 ]. 

 Interestingly, transcriptional profi les of breast cancer subtypes also reveal shared 
gene expression patterns with the fetal mammary stroma [ 15 ]. The dependence of 
stem cell behavior on contextual cues from the stroma is well demonstrated, and this 
fi nding suggests that breast cancer cells may evolve autocrine sources of signals that 
are typically delivered to the embryonic mammary epithelium through a stromal para-
crine source. An important area of research, the cell of origin for breast carcinoma, 
and its development and phenotypic fate most likely depend on a constellation of 
genetic mutations and changing environmental infl uences. Increasing evidence sug-
gests that reactivation of autocrine and paracrine embryonic signals may contribute to 
the development of plastic, proliferative stem cell character in breast cancer cells.  

9.3     The Breast Cancer Microenvironment 

 The concept of a stem cell niche fi rst emerged in the study of hematopoietic stem 
cells to describe a particular anatomical location that integrates diverse and dynamic 
extracellular stimuli to modulate stem cell function and tissue homeostasis [ 19 ]. 
Numerous studies in invertebrate and mammalian models have demonstrated that 
stem cells depend on interaction with the niche to retain proliferative potential and 
potency [ 20 – 24 ]. During development, the niche has been shown to both shape the 
development of stem cells and restrict inappropriate cell growth and behavior. The 
relationship between stem cells and their niche then is a delicate balance of permis-
sive and restrictive cues supported by bidirectional communication and plasticity 
that evolve together during development. As it must respond to dynamic 
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environmental signals, the niche itself retains a high level of plasticity. This plastic-
ity can unfortunately be appropriated by cancer stem cells in order to silence restric-
tive cues and promote a pro-tumor context that appears to evolve alongside tumor 
cells, culminating in malignancy. Understanding factors that change the balance of 
signals in the CSC niche is essential to understanding the roots of tumorigenesis. 

 The acquisition and manifestations of plasticity by BCSCs are accompanied by 
the parallel development of the BCSC niche. Like its normal counterpart, the BCSC 
niche includes all the factors available to tumor cells to guide and support their devel-
opment, including mesenchymal and immune cells, fi broblasts, ECM, blood supply, 
soluble and hormonal factors, and cell types recruited by the tumor itself. The cross 
talk between BCSCs and the niche is well demonstrated in activating diverse tumor 
processes at the local and systemic level. Tumor-niche communication is involved in 
creating reactive stroma, initiating invasion, recruiting bone marrow mesenchymal 
cells, and preparing distant sites for metastasis [ 25 ,  26 ]. Likewise, interaction with 
the microenvironment provides signals to breast cancer cells to support EMT and 
stem cell character and to initiate processes such as metastasis and vasculogenic 
mimicry, whereby tumor cells can form perfusive channels to nourish a growing 
tumor [ 4 ,  27 ]. In order to support breast cancer development, the normal regulatory 
function of the niche that supports homeostasis is subverted, and a new developmen-
tal program emerges, driven by communication with tumor stem cells. Indeed, a 
number of embryonic signaling pathways appear to be part of the cancer morpho-
genic process, including TGFβ family members, Shh, Notch, and Wnt pathways, 
which can induce EMT, maintain stem cell potency, initiate migration, and regulate 
growth, self-renewal, and differentiation processes in development and cancer [ 28 ]. 

 The extent to which tumor–stroma interactions can be compared to normal develop-
ment is, of course, limited. Cancer development is an abnormal process, complicated by 
genetic mutations and clonal selection. As mentioned above, breast cancer cells them-
selves have been shown to secrete factors normally provided by stroma, demonstrating 
that the activation of developmental pathways in cancer does not directly copy a devel-
opmental paradigm. However, embryonic developmental pathways do seem to support 
some processes in the context of cancer that are similar to those supported by the same 
pathways during embryogenesis, suggesting that improved knowledge of how these 
pathways function and how they can be regulated in embryogenesis and cancer may 
provide clues as to targeting developmental plasticity in breast cancer.  

9.4     The Embryonic Microenvironment 

 Lewis Wolpert’s famous quote “It is not birth, marriage, or death, but  gastrulation , 
which is truly the most important time in your life” captures the signifi cance of the 
establishment and differentiation of the embryonic microenvironment for subse-
quent development. During successful embryonic development, the infi nite poten-
tial of ES cells is carefully winnowed and guided by interaction with the 
microenvironment to produce a specifi c outcome with remarkable reliability. If the 
interaction between embryonic cell domains is not properly established, 
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development will be abnormal. Since the original observation that tumor develop-
ment resembles an embryonic process, studies have shown that the interdependent 
development of tumor and stromal cells does indeed reproduce aspects of embry-
onic development, where plasticity and environmental context determine cell fate 
and eventual outcomes. In tumorigenesis, however, it appears that the process of 
clonal selection allows tumor cells to overcome the dominant infl uence of the 
 normal microenvironment over cell fate, resulting in a chaotic and deleterious 
developmental program. Recent lines of evidence suggest that the embryonic micro-
environment, capable of restraining embryonic signaling pathways and shaping 
highly plastic cells into differentiated states, may hold clues as to suppressing the 
reemergent embryonic pathways known to promote aggressive tumor behavior. 

 The relationship between embryonic and tumor developmental states has been 
investigated through a series of now classic experiments. First, unmodifi ed ES cells 
transplanted into a blastocyst have been shown to give rise to normal adult tissues 
and germ cells in a mouse model, and yet the same cells transplanted subcutane-
ously can produce malignant teratocarcinomas [ 29 ,  30 ]. This experiment demon-
strates the cancerous potential of normal ES cell properties in an alien context and 
the essential, dominant function of the environment in restraining this potential. 
Mintz and Ilmensee sought to test the implications of these conclusions for tumor 
biology in a set of experiments with embryonal carcinoma cells. After subcutaneous 
injection, this cancerous cell line formed robust tumors in the host; however, the 
same cells were able to generate normal, noncancerous tissues of a chimeric mouse 
when transferred into the blastocyst, demonstrating that cancerous cells with genetic 
alterations can adopt new phenotypes in response to embryonic environmental cues 
[ 31 ]. Bissell and colleagues have shown further that chicken embryonic cells 
infected with RSV, which expresses the potent oncogene pp60src, do not develop 
tumors, yet cells taken from these embryos and placed in culture immediately 
exhibited tumorigenic behavior [ 32 ]. Finally, Hochedlinger and colleagues were 
able to show that nuclei from malignant melanoma cells could be transplanted into 
oocytes and give rise to normal, albeit tumor-prone, tissues, demonstrating the inter-
action between genetic and epigenetic determinants at the cellular level [ 33 ]. 
Together these studies demonstrate the natural tumorigenic potential of embryogen-
esis and the importance of the embryonic microenvironment in restraining this 
potential, imposing cell fate and directing embryonic processes in a fi nite develop-
mental course. For cancerous cells, while genetic mutations almost certainly insti-
gate malignant transformation, the reprogramming of tumor cells by the embryonic 
environment suggests that the environment and cellular phenotype can modulate the 
effects of cancer-causing genotype in determining cell behavior. Further, the embry-
onic microenvironment, with its remarkable plasticity and instructional potency, 
may hold promise for developing cancer therapeutics. The molecular mechanisms 
underlying embryonic morphogenesis have been studied for some time; however, 
the dysfunction of embryonic-like signaling between tumor cells and their microen-
vironment is poorly understood. 

 In an effort to investigate mechanisms of bidirectional communication between 
cancer cells and the embryonic microenvironment, the embryonic zebrafi sh model 
has been used effectively as a biosensor for embryonically potent signaling by 
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malignant melanoma cells. In these experiments, malignant melanoma cells were 
transplanted into developing zebrafi sh embryos at either the animal pole or the yolk 
margin and caused cranial outgrowth and axis duplication, respectively. Alternatively, 
if GFP-labeled melanoma cells were injected centrally in the embryo, they persisted 
in the animal until maturity, without giving rise to tumors or duplicate axes [ 34 ]. 
These experiments demonstrate that cancer cells are able to participate in specifi c 
embryonic processes in ways that change developmental outcomes and, moreover, 
that the phenotypes induced in receptive embryonic fi elds might provide insight into 
the morphogenic signaling pathways active in tumors. 

 The above experiments in zebrafi sh led to the discovery that melanoma cells 
secrete Nodal, an embryonic morphogen of the TGFβ family with demonstrated roles 
in plasticity and fate determination [ 34 ]. Expressed in early development, Nodal is 
essential to support embryonic stem cells in their undifferentiated state and to promote 
specifi c types of differentiation, including EMT, body axis specifi cation, and left–
right asymmetry (for review, see [ 35 ]). As a soluble factor released into the microen-
vironment, Nodal partners with a co-receptor, Cripto-1, and binds type I and II ALK 
family receptors to activate signaling. The active receptor complex phosphorylates 
signaling molecules Smad2 and Smad3, which are then able to bind Smad4, translo-
cate to the nucleus and complex with transcription factors, such as FoxH1 and Mixer, 
to activate transcription of target genes. In normal development, transcriptional targets 
of Nodal include potent fate determinants such as Goosecoid and Nodal itself. 
Importantly, during embryogenesis, the activity of Nodal is limited temporally and 
spatially by expression of a Nodal inhibitor, termed Lefty. A soluble factor in the 
microenvironment, Lefty binds Nodal ligand, prevents its signaling through cell sur-
face receptors, and thereby breaks the positive feedback cycle of Nodal signaling to 
attenuate Nodal expression. Cancer cells, however, appear to methylate the Lefty gene 
promoter, silencing its expression and leaving Nodal expression and the Nodal-driven 
morphogenic program unchecked. Reintroducing Lefty to the environment of cancer 
cells, either with ES cell-conditioned media or ES cell-derived Lefty, is suffi cient to 
suppress both Nodal expression and tumorigenicity of these cells [ 36 ]. 

 Subsequent to experiments in melanoma, Nodal signaling has been shown to 
support tumorigenicity in a number of other cancers, highlighting a potentially 
broad relevance for this signaling pathway in the development of prostate, pancre-
atic, and breast cancers [ 37 – 39 ].  

9.5     Nodal Signaling in Mammary Development 
and Breast Cancer 

 Although Nodal had been thought to function uniquely in early embryogenesis, 
recent studies suggest that Nodal signaling may contribute to normal mammary 
development as well. In the developing mouse, Nodal is expressed in the growing 
mammary ducts along with Cripto-1. Disruption of Nodal signaling in the develop-
ing mammary gland leads to defects in ductal architecture and ductal branching and 
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causes abnormal epithelial organization, suggesting that Nodal may exert its potent 
morphogenic effects on breast stem and progenitor cells during mammary develop-
ment [ 40 ]. To further investigate the function of Nodal in mammary development, 
Kenney and colleagues implanted beads-secreting recombinant Nodal into the 
developing mouse mammary gland and demonstrated increased disorganized side 
branching of mammary ducts in the region of increased Nodal signaling. Moreover, 
ductal branching proceeded away from the source of recombinant Nodal, indicating 
that Nodal may provide positional and morphological cues to developing mammary 
tissue [ 40 ]. Similar to Nodal function in other contexts, Nodal signaling is attenu-
ated as development proceeds, and normal mature human breast tissues do not 
express Nodal protein. As breast cancers develop, however, it appears that the Nodal 
signaling pathway is reactivated. Strizzi and colleagues have shown that human 
breast tumors display increased Nodal expression in correlation with tumor grade, 
and, similar to melanoma, these tumors do not express Lefty [ 39 ]. 

 Intriguingly, exposure of malignant MDA-MB-231 breast cancer cells to an 
embryonic microenvironment is suffi cient both to suppress Nodal expression and 
reduce malignant behavior. Alternatively, exposure of MDA-MB-231 cells to ES 
cell-derived Lefty suppresses Nodal expression in these cells along with the tumori-
genic phenotype [ 36 ]. In order to investigate the dependency of breast carcinoma 
cells on Nodal signaling, short hairpin-mediated knockdown of Nodal expression in 
breast has shown a dramatic phenotype in multiple cell lines. In vitro, Nodal knock-
down causes reduced growth, proliferation, invasion, and polyploidization culmi-
nating in increased apoptosis. Furthermore, in a mouse xenograft model, tumors 
derived from Nodal knockdown cells displayed signifi cantly diminished growth and 
reduced tumor engraftment when compared with controls (our unpublished data). 
Ongoing studies will determine the mechanisms by which Nodal signaling can pro-
mote a tumorigenic program in breast cancer cells and whether Nodal participates 
in reactivating embryonic processes in breast cancer progression.  

9.6     Reprogramming Breast Cancer Cells 

 The plasticity of BCSCs and their ability to adapt to changing stimuli are the notori-
ous qualities that make the disease so devastating, and yet these qualities also repre-
sent a potential Achilles’ heel of tumor aggression. First, as CSCs are receptive to 
certain environmental cues, providing appropriate cues may represent an opportu-
nity to therapeutically reprogram breast cancer cells to a more benign phenotype. 
Second, while tumorigenesis begins with mutations in the DNA sequence of tar-
geted cells, reversible epigenetic factors appear to play a large role in progression of 
the plastic, stem-like phenotype. Therapeutically targeting these epigenetic pro-
cesses may deprive tumor cells of essential contextual cues and lead to a loss of 
plasticity and aggressive character. Furthermore, although it may one day be possi-
ble to “mend” DNA lesions in cancer cells, the epigenetic evolution of cancerous 
clones and their associated microenvironment may be far removed from the original 
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genetic changes, representing an independent process that must be targeted in order 
to eradicate sources of disease recurrence. In recent years, better understanding of 
microenvironmental determinants and epigenetic programming have pushed these 
factors forward as promising new avenues to target the most devastating aspects of 
breast cancer. 

 Considered all heritable changes in DNA structure outside the DNA sequence 
itself, epigenetics is a broad term for many complex and interconnected processes 
that defi ne how the genome can be used by a given cell. Epigenetic “programming” 
also determines how genetic factors will interact with the microenvironment to pro-
duce cell behavior or phenotype. While cancer cells and their environment can 
shape the evolution of each other’s epigenetic state, it is the epigenetic state of the 
cell that determines how the cell will behave under various conditions. Therefore, 
only cells with an epigenetic stem or progenitor cell program can respond to cues to 
self-renew, proliferate, and differentiate into multiple lineages, while more differen-
tiated cell types do not have access to the transcriptional programs necessary to 
effect plasticity processes. In breast cancer, epigenetics also help defi ne the breast 
cancer stem cell phenotype, but the evolution of epigenetic state is most likely some-
what different than in normal development or homeostasis. Normal stem cells can be 
considered among the most “unprogrammed” cells, with the greatest plasticity and 
potential for future programming and also with the greatest need for tight regulation 
by the environment to guide these functions toward serving the needs of the whole 
individual. As discussed, cancer cells also display great plasticity; however, clonal 
selection among tumor and environmental cells promotes conditions that favor 
growth and favor the evolution of increasingly plastic epigenetic states. In cancerous 
cells, tumor suppressor genes, which restrain growth, may become silenced by both 
DNA and histone methylation, acetylation,    ubiquitination, and other modifi cations, 
while oncogenes may retain unscheduled activity. DNA- and histone methyltrans-
ferases and other epigenetic modifi ers themselves are often targeted for mutation 
and epigenetic misregulation, leading to global epigenetic changes, depending on 
tumor context [ 41 – 43 ]. Importantly, unlike genetic mutations, epigenetic changes 
are reversible and may therefore be promising targets for therapy. 

 Methods to epigenetically reprogram tumor cells as a therapeutic method can be 
thought of along the lines of two basic, overlapping approaches, both of which are 
tailored to tumor-type and molecular and epigenetic features (Fig.  9.1 ). The fi rst can 
be thought of as “deprogramming,” wherein drugs remove or prevent the accumu-
lated epigenetic marks that promote malignancy. This process is similar to the 
global demethylation and deprogramming of oocytes upon fertilization that “resets” 
them for redevelopment. Clinically, multiple drugs designed to prevent hypoacety-
lation or hypermethylation have been developed and are employed in combination 
with traditional chemotherapy [ 42 ]. Emerging studies suggest that the tumor- 
targeting effects of epigenetic drugs are pleiotropic, but one important effect is the 
reactivation of tumor suppressor genes that have been inappropriately silenced. 
Reactivation of tumor suppressors leads to growth suppression and apoptosis 
and increased sensitivity to chemotherapy drugs. Furthermore, in experimental 
studies, epigenetic modifi ers seem to target and diminish the BCSC population [ 44 ]. 
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While these studies are promising and despite the success of epigenetic modifi ers in 
treating leukemia patients, the same drugs have not been as effective in treating 
breast cancer patients.

   It remains unclear why breast cancers are less responsive to epigenetic modifi ers 
than hoped, despite promising in vitro experimentation, but several plausible expla-
nations have been put forward. First, although such therapies appear to target CSCs, 
the model for the cancer developmental hierarchy may be shifting. Recent reports 
suggest that tumor cells may exhibit phenotypic plasticity, allowing non-CSCs in 
the tumor to assume a CSC fate in response to unknown cues and replenish the CSC 

  Fig. 9.1    Methods of nuclear reprogramming. ( a ) Upon fertilization, the oocyte genome undergoes 
rapid demethylation, effectively reprogramming the nucleus. The reprogrammed cell and its prog-
eny can receive microenvironmental cues and participate in a developmental program. ( b ) Histone 
methyl transferase (HMT) inhibitors prevent gene silencing associated with histone methylations. 
Cancer therapy with HMT inhibitors leads to re-expression of tumor suppressor genes, which slow 
tumor growth and promote apoptosis, particularly in combination with cytotoxic drugs. ( c ) The 
aim of differentiation therapy is to provide differentiation cues to plastic tumor cells, thus pushing 
them toward a less plastic, less malignant fate, and making cells more sensitive to apoptotic stim-
uli. ( d ) Anti-plasticity therapy deprives cancer cells of the signals required to remain plastic, 
thereby allowing differentiation and enabling apoptosis       
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population after treatment [ 45 ]. A related explanation is that epigenetic changes 
produced by therapy are reversible and that after “reprogramming,” the remaining 
tumor cells may continue to receive instructive cues from the microenvironment to 
revert to an aggressive state. Both cases are compelling in the need for better under-
standing of the communication between tumor cells and their environment, the sig-
naling pathways that are used, the origins and maintenance of cancer stem cells, and 
the methods that may be used to target epigenetic modifi cations in combination with 
microenvironmental factors and conventional antitumor therapy. 

 A second approach to epigenetic therapy, termed “differentiation therapy,” is less 
well developed clinically and more specifi c to tumor type and characteristics. 
Differentiation therapy seeks to harness the plasticity of tumor cells to push them 
further down a developmental pathway, making them less plastic, less aggressive, 
and potentially more sensitive to cytotoxic drugs (Fig.  9.1 ). Theoretically, this 
approach includes both providing differentiation cues to the tumor cells themselves 
and modifying the tumor environment to limit stem cell potential and support dif-
ferentiation. The fi rst successful administration of differentiation therapy has been 
the treatment of acute promyelocytic leukemia (APL) patients harboring the PML- 
RARα translocation with all-trans retinoic acid (ATRA). Unlike the RARα protein, 
which activates transcription of a differentiation program, the PML-RARα fusion 
protein binds and represses RARα target genes, blocks differentiation, and causes 
leukemia. Administration of ATRA restores activation of these genes, promotes 
both granulocytic differentiation and apoptosis of leukemic blasts, and evokes 
remission in an otherwise uniformly fatal malignancy [ 46 ]. The example of APL 
illustrates both the potential success of differentiation therapy and also the diffi culty 
in developing this type of therapy, as it must be specifi c for molecular mechanisms 
active and relevant in a specifi c tumor and its microenvironmental context. 
Exploration of the pathways that maintain pluripotency will hopefully aid in identi-
fying new opportunities for differentiation therapy that may be active in multiple 
kinds of tumors. As embryonic pathways emerge as critical supports for cancer 
aggression, the molecules active in embryonic plasticity and differentiation may 
provide attractive targets with broad applicability among cancer types. 

 A number of embryonic signaling pathways that are reactivated in cancer have 
been investigated as potential therapeutic targets to limit plasticity, including Notch, 
Hedgehog, mTOR, and the TGFβ family, with some success and some limits to appli-
cation imposed by side effects to normal stem cells. Although less well developed, 
Nodal is an intriguing therapeutic target, as it is expressed by both tumor cells and 
stroma of diverse cancer types, but minimally expressed in normal adult tissues 
(although the function of Nodal in select normal adult stem cells needs to be demon-
strated) [ 47 ,  48 ]. Inhibiting Nodal may then limit the plasticity of tumor cells and 
stroma without affecting normal stem cells, thereby suppressing tumor growth and 
adaptation processes such as vasculogenic mimicry and metastasis, and thus curtail-
ing the ability of the tumor stroma to induce and support CSC characteristics (Fig.  9.1 ). 

 While therapeutically suppressing Nodal signaling in vitro has been successful, 
accomplishing this task in vivo has been challenging. In a mouse xenograft model 
of melanoma, intraperitoneal delivery of anti-Nodal antibodies was able to reduce 
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Nodal signaling, slow tumor growth, and promote apoptosis [ 49 ]. In studies with 
pancreatic cancer, however, the Nodal/Activin inhibitor SB431542 was able to 
diminish populations of phenotypic CSCs in vitro, but not in vivo, apparently 
because the induced differentiation was reversible and treatment withdrawal led to 
a resurgence of the CSC phenotype. Interestingly, inclusion of Gemcitabine in the 
therapy regimen with SB431542 led to complete and irreversible elimination of 
CSCs in pancreatic cell line xenografts. This effect was not carried forward in xeno-
grafts of human pancreatic tumors, potentially because of the large amount of asso-
ciated stroma, which is itself a source of Nodal signaling, and the inability of the 
drug to penetrate the tumor. Interestingly, several groups have shown that in the case 
of pancreatic cancer, inhibiting Shh signaling in the stroma may reduce Activin/
Nodal signaling there and may have benefi t in combined therapy aimed at reducing 
Nodal signaling [ 37 ,  50 ,  51 ]. 

 Indeed, while embryonic signaling pathways are an integral part of breast tumor 
development, there are multiple other processes that contribute to disease progres-
sion, including genetic mutations and genomic instability, infl ammation and 
immune factors, activation of the stroma, and global epigenetic deregulation. 
Successful treatment will likely involve a combination of therapeutics directed at 
these and other aspects of breast tumorigenesis.  

9.7     Conclusions 

 Just as embryonic cells establish a relationship of mutual development with other 
cells in the embryo, recent evidence shows that cancer cells induce a mutual evolu-
tion of phenotypes with their environment which may represent a distorted recapitu-
lation of certain embryonic processes. The functions of reactivated embryonic 
signaling pathways in breast cancer stem cells and their microenvironment are 
likely as complex, heterogeneous, and complicated by cross talk as the embryonic 
processes themselves. However, studies suggest that the investigation of these path-
ways and improved understanding of their effect on plasticity, proliferation, differ-
entiation, and bidirectional communication with the microenvironment are 
beginning to defi ne new therapeutic opportunities. Specifi cally, studies of the 
embryonic microenvironment, as a niche specialized to restrain plasticity and direct 
differentiation, may provide new directions in suppressing breast cancer plasticity 
and treating breast cancer patients.     
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    Abstract     More than 90 % of deaths from breast cancer are a result of metastases, 
rather than the primary tumour. In recent years it has become possible to study the 
occult steps of metastasis that have previously been clinically undetectable—single 
tumour cells that have disseminated early on from the primary tumour and are en 
route to distant sites. High-resolution genomic and gene analyses of these rare cells 
show that they carry their own unique sets of aberrations and are frequently quite 
different from the primary tumours they originated from. They appear to be hetero-
geneous and in a transitional state, expressing genes necessary to allow them passage 
into the circulation as well as genes required to see them through survival or 
dormancy in blood vessels and metastatic niches such as the bone marrow and lymph 
nodes. They possess gene signatures ranging from up- regulation of genes associated 
with invasiveness and dormancy to expression of favourable growth factor receptors 
that facilitate extravasation and survival at secondary sites. Circulating tumour cells 
(CTCs) in the blood and disseminated tumour cells (DTCs) in the bone marrow have 
been reported to have strong prognostic relevance by predicting survival and relapse 
in both early and late stages of breast cancer. They are emerging as promising bio-
markers for monitoring the response to treatment, whereby a drop in cell numbers is 
suggestive of a positive response, but persisting cells indicate resistance and a poor 
prognosis. It is apparent that not just the primary and metastatic tumours need to be 
targeted, but also the intermediate cells in transition that do not necessarily refl ect 
the genetics of the tumour they originated from or the metastasis they may eventually 
give rise to. As more disseminated cell markers are being consecutively added to a 
growing panel, the heterogeneous nature of breast cancer is becoming more evident, 
paving the way for a systemic approach to experimental design and treatment regi-
mens. Molecular characterization of single disseminated cells in the bloodstream 

    Chapter 10   
 Metastatic Determinants: Breast Tumour Cells 
in Circulation 

             Nisha     Kanwar      and     Susan     J.     Done    

        N.   Kanwar      •    S.  J.   Done      (*) 
  The Campbell Family Institute for Breast Cancer Research ,   620 University Avenue, 
Suite 7-504 ,  Toronto ,  ON ,  Canada ,  M5G 2M9   
 e-mail: nisha.kanwar@mail.utoronto.ca; Susan.Done@uhn.ca  



192

will help address many of the questions surrounding the development of breast 
cancer metastasis.  

10.1         Breast Cancer Metastasis 

 Despite signifi cant advances in early screening and targeted therapies to reduce 
deaths from breast cancer, metastasis remains the leading cause of mortality amongst 
cancer patients. In metastasis, a select few cells acquire the ability to invade tissues 
that surround the primary tumour, thus allowing them to break free and enter the 
circulation via intravasation of the blood or lymphatic systems. Once in circulation, 
this ‘occult’ process goes undetected; they travel to distant organs, and in some cases 
like ‘seeds’, displaying specifi c receptors that home them to their respective ‘soil’; 
and they are able to survive, extravasate, reinitiate aberrant cell division and propa-
gate secondary tumours at new organs (Fig.  10.1 ). It is not the primary tumours, but 
these secondary tumours with varying potential that are responsible for cancer deaths.

  Fig. 10.1    The metastatic cascade: tumour cells within the primary tumour mass disseminate and 
invade through the basement membrane (BM) into the surrounding stromal tissue, where with the 
aid of stromal-released factors, they will intravasate into newly formed blood vessels or the lym-
phatic system and circulate to distant sites such as the bone marrow, lymph nodes or secondary 
organs. Here, they will either go through apoptosis or enter a period of dormancy until they receive 
favourable signals from the secondary site to reinitiate proliferation and form a new tumour. Once a 
secondary tumour has been established, cells from this tumour mass are potentially capable of going 
through the same cycle to seed new metastases or reseed the original tumour they were derived from       
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   Although tumour cells are shed in a range of 10–1,000s early on in  tumourigenesis, 
they must survive in vessels against shear stress forces, anoikis and unfavourable 
growth niches, and a majority of them will be in circulation for only a few days 
before undergoing apoptosis [ 1 ]. Metastasis is thus a highly ineffi cient process, 
where less than 0.01 % of cells that enter circulation succeed in arriving at a new site 
where they follow one of two fates: either they remain dormant for up to 20 or more 
years or they respond to favourable signals in their new microenvironment and enter 
cell division to form a new tumour [ 2 ]. Recently, in mouse models, it was shown that 
cells in circulation have the capability to essentially retrace their dissemination 
route back to the primary tumours, where they may multiply and subsequently re-
disseminate [ 3 ]. It is this rare population of circulating cells with metastatic propen-
sity that escapes chemotherapy and radiation, making them an aggressive subset that 
requires the attention of new targeted therapies to prevent their spread and stop the 
threat of metastasis. One of the hallmarks of curable cancer is early detection so that 
the tumour may be removed and treated locally by radiation before it spreads. If, 
however, cells are already in circulation at early time points, the approach needs to 
be a systemic one, where the cells in circulation must be targeted and eradicated 
before they receive the signals to propagate at new and distant sites.  

10.2     CTCs and DTCs in Breast Cancer 

 The existence of tumour cells in the circulating blood of cancer patients was fi rst 
reported in 1869 by a physician, Thomas R. Ashworth [ 4 ]. Over a century later, 
technology has provided us with refi ned detection tools that enable us to fi nd dis-
seminated tumour cells in the blood, bone marrow and other niche organs that sus-
tain them. In the clinic however, these cells fall under the umbrella of minimal 
residual disease, go undetected by conventional radiological imaging techniques 
(CT, PET, MRI) and are technically impossible to resect or collectively remove. 
Tumour cells found in the circulating blood are referred to as circulating tumour 
cells or CTCs, while tumour cells found in the bone marrow are referred to as dis-
seminated tumour cells or DTCs. It is still unclear as to which niche houses the 
earliest population of tumour cells that have left the primary site or what route they 
took to arrive there (haematogenous or lymphatic systems). Notably, although 
lymph node metastasis is an accurate prognostic indicator of distant metastases, 
there are about 20–30 % of patients whose cancer metastasizes without involvement 
of the lymph nodes, indicating haematogenous spread of tumour cells to the meta-
static sites [ 5 ].    There is growing evidence that the secondary organ’s microenviron-
ment is a deciding factor in whether or not CTCs or DTCs will extravasate there and 
survive. For example, TGFβ expressed in the bone or lungs, TGFα in the liver and 
CXCR4/7 chemokine receptors expressed on tumour cells, will home to their 
ligands CXCL12 and CCL21 in the lung, liver and bone marrow, and thus infl uence 
the ability of metastatic cells to grow in the respective organs via the activation of 
various signalling pathways involved in migration, actin polymerization, prolifera-
tion and survival [ 1 ,  6 ]. Thus, it might not be an access point, but rather, pre-estab-
lished signals from optimal sites that decide the route circulating cells will take. 
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 Tumour cells in circulation are rare, with approximately 1 cell in 10 6 –10 7  nucle-
ated blood cells [ 7 ]. In order to study them, an enrichment step from the blood or 
bone marrow is fi rst performed, followed by labelling for normal epithelial markers. 
Several methods for enrichment of CTCs have been described—immunomagnetic 
bead separation, density centrifugation, size-based exclusion, fl ow cytometric sepa-
ration and more recently microfl uidic devices such as the CTC chip and Herringbone 
chip which are coated with antibodies for tumour cell capture [ 1 ,  5 ,  8 – 10 ]. Each of 
these methods allows for either positive selection by targeting CTCs with epithelial 
markers (cytokeratin, EpCAM) or negative selection by targeting white blood cells 
with panleukocyte markers (CD45). 

 Currently it is impossible to differentiate between CTCs and DTCs of prognostic 
value or metastatic potential from those that will remain dormant, undergo apopto-
sis or be targeted by the immune system. CTCs and DTCs are identifi ed with the 
same core set of markers—cytokeratins and EpCAM positive and CD45 or leuko-
cyte negative. In 2008, the FDA approved the CellSearch™ System for the isolation 
and enumeration of tumour cells from the blood or bone marrow of metastatic breast 
cancer patients [ 11 ]. Since then there have been numerous publications validating 
its sensitivity in isolation of these rare tumour cells [ 12 – 16 ]. The system includes 
fi xation and labelling of cells with markers for epithelial and white blood cells, fol-
lowed by immunomagnetic separation of epithelial cells. An automated system then 
enumerates signals to provide an output of the number of epithelial cells per mL of 
blood or bone marrow analysed. The array of markers used to identify tumour cells 
is progressively increasing—HER2 was recently added to the breast cancer panel 
[ 8 ]. Cells in circulation that evade immune targeting or systemic chemotherapy 
treatments are hypothesized to be a more aggressive subpopulation of chemoresis-
tant, stem cell-like (CD44+/CD24−) tumour cells, and as a result, stem cell and 
epithelial-to-mesenchymal transition (EMT) markers (CD44, CD24, ALDH1, Twist 
and AKT) are also included in some studies to determine if there are stem cell-like 
or tumour-initiating cells amongst the CTCs and DTCs, which are capable of sur-
vival and self-renewal [ 17 ,  18 ]. Ki67, EGFR, EMMPRIN and uPAR are amongst 
other frequently used markers for studying disseminated cells [ 5 ]. 

 In addition to immunocytochemical methods, RT-PCR-based detection of tumour 
cells in circulation is by far the most sensitive assay in use. After enrichment, tran-
scripts of tumour origin may be detected in a range of 1 per 20 million cells, although 
the downside is that the specifi city is riddled with confounding factors such as false 
positives, pseudogenes, non-specifi c PCR products and contamination [ 1 ]. Previously, 
we carried out quantitative detection of mRNA transcripts for KRT19 after spiking 
healthy volunteer blood with breast cancer cells. We reported that RT-PCR assays 
had a reliable detection limit of 5 cells/mL in 1 mL of blood, and CTC load was 
accurately refl ected by linear amplifi cation of KRT19 mRNA [ 19 ]. Thus, RT-PCR 
could also be developed into an enumerative assay without absolute counting of 
CTCs. Another advantageous feature of RT-PCR-based assays is the ability to multi-
plex and measure larger panels of cancer- or tissue-specifi c markers, which over-
comes the issue of specifi city of the cells in question. Some common markers include 
KRT19, CEA, TERT, TWIST1, MUC1, mammaglobin and EGFR [ 1 ]. The caveat, 
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however, in any enrichment method that involves labelling tumour cells is the 
 heterogeneity of breast cancers where there will be variability in expression of these 
markers depending on molecular subtype in the case of EGFR or differentiation in 
the case of MGB2 or even EMT in the case of KRT19, EPCAM and TWIST.  

10.3     Metastasis Is an Early Event 

 Recent studies have shown that primary tumours may have a gene expression signa-
ture that is predictive of metastasis [ 20 – 22 ]. Furthermore, primary tumour expres-
sion signatures also defi ne the route of metastatic spread—haematogenous or 
lymphatic. Woelfl e et al. compared primary tumours with and without DTCs or 
lymph node metastases and found distinct signatures were able to predict bone mar-
row versus lymphatic micrometastases, with minimal overlap of only nine genes 
[ 23 ]. Genes involved in the DTC-positive primary tumour signature included JAK/
STAT and the HIF-1α pathways, implicated in tumour cell survival, invasion and 
angiogenesis. HIF-1α also activates other genes such as lysyl oxidase which acti-
vates focal adhesion kinases to enhance invasion, and CXCR4 involved in homing 
and survival of cancer cells at secondary sites [ 23 ]. There is also collective evidence 
to show that the dissemination of tumour cells is in fact an early event. The previous 
notion that larger tumours gave rise to metastases has been challenged by fi ndings 
that suggest dissemination can even occur in the earliest invasive stages of cancer 
progression in both murine models and human breast cancer, and it occurs indepen-
dently of tumour size [ 24 ]. Disseminated tumour cells have been found in niches 
such as the bone marrow and lymph nodes before the onset of overt metastases [ 1 , 
 23 ,  24 ]. Furthermore, disseminated tumour cells were found in circulation in 
patients with small (less than 2 mm) tumours and also in patients with undetectable 
primary tumours (less than 7 % of cases of breast cancer) [ 21 ,  25 ]. These cells can 
remain dormant in niches such as the bone marrow or a future site of metastasis 
such as the lung, and upon induction by growth stimuli of the microenvironment, 
they can be reprogrammed to establish secondary tumours [ 26 ]. These observations 
provide evidence that the initial steps of metastasis occur early on within primary 
tumours and are programmed to allow dissemination via predetermined routes to 
potentially predetermined niches for either a dormant phase or an aggressive prolif-
erative phase. This also raises an important caveat in the current methods to produce 
these molecular signatures—should we be analysing bulk tumours or should we be 
addressing heterogeneity by analysing tumours on a compartmentalized or single-
cell basis? The latter method would indeed lead to the discovery of low-level signa-
tures present in those selective cells destined for dissemination and lead to novel 
targets to prevent this metastatic step altogether. Schmidt et al. showed that in mul-
tifocal prostate cancer, CTCs originated from distinct foci, even if they were as 
small as 0.2 cm, again suggesting that the blueprint for dissemination is probably in 
the primary tumour, and is detectable in single cells [ 27 ]. With the advent of high-
resolution next-generation sequencing technology, single cells have been sequenced 
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from primary tumours and their matched metastases, which reveal heterogeneity 
and clonal evolution of one or few clones in a sequence of events [ 28 ]. It has been 
reported that signifi cant heterogeneity can occur on a single-nucleotide mutation 
level. Using next-generation sequencing in breast cancer progression, 6 of 32 
somatic mutations found in a metastasized tumour were also found in the primary 
tumour from 9 years earlier and were detected at low frequencies (1–13 %) [ 29 ]. 
Similarly, Ding et al. reported signifi cant changes in allelic frequencies of mutations 
found in brain metastases, suggestive of low frequencies of these cells existing in 
the original breast primary tumour [ 30 ]. In the future, this type of analysis will pro-
vide the added benefi t of using markers of these small fractions of cells for prognos-
tic and monitoring purposes over time. 

 Schardt et al. used comparative genomic hybridization (CGH) to show that DTCs 
in patients without metastases had fewer aberrations and were more heterogeneous 
compared to those found in patients with metastatic late-stage cancer [ 22 ]. This sug-
gests that DTCs have the capability to accumulate genetic abnormalities parallel to 
the primary tumour, with clonal selection of aggressive cells occurring in later 
stages. Hüsemann et al. showed in their murine model that pre-invasive lesions 
stained positively and more intensely for the EMT marker Twist compared to the 
invasive edge of tumours [ 24 ]. Also early DTCs and CTCs often express the poor 
prognostic aggressive disease marker HER2, although they originated from HER2- 
negative primary tumours [ 24 ]. Both of these observations are indicative of transi-
tional changes occurring early in primary tumours allowing cells within them to 
disseminate. This also highlights a requirement for treating breast cancer in a sys-
temic manner, based on markers activated in the transitional steps that lead to overt 
metastasis, rather than just the genotype of the primary tumour.  

10.4     Molecular Characteristics of DTCs and CTCs 

 Two main models of metastasis have been proposed. The fi rst is the linear progres-
sion model where a primary tumour’s malignant genetic status is complete and 
decided fi rst, and the disseminated tumour cells evolve from these founder cells 
[ 31 ]. The second is the parallel progression model, where tumour cells disseminate 
early on and evolve into their own genetically malignant entities, independently of 
the primary tumour, at distant sites [ 32 ]. Klein et al. showed through molecular 
characterization of primary tumours and their matched DTCs that once cells have 
left the primary tumour at early stages, they develop independently with a unique 
set of aberrations and are more heterogeneous compared to DTCs in patients with 
distant metastases at late stages [ 33 ]. Furthermore, genomic aberrations that are 
characteristic of the breast primary tumours (16q−, 13q−, 17p− and 8q+) were 
absent from the genomic profi les of DTCs analysed by CGH, although their malig-
nant origin could be confi rmed by microdeletions also found in primary tumours 
(16q22−, 8q11−) [ 22 ,  33 ]. The prevailing pattern observed was that the DTCs were 
distinct from primary tumours, which were more like their lymph node metastases 
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than the DTCs [ 21 ,  34 ]. Such discrepancies were also reported in CTCs when com-
pared to primary tumours for markers such as ER, PR, HER2 and EGFR mutations. 
These observations are in concordance with studies which showed discrepancies 
between molecular alterations of primary and metastasized secondary tumours. 
Flores et al. designed a study to establish the relationship between HER2 status of 
primary tumours, CTCs and metastatic lesions in 75 patients with breast cancer 
using fl uorescence in situ hybridization (FISH) [ 8 ]. Interestingly, patients with 
HER2-positive primaries had HER2-positive CTCs 98 % of the time, compared to 
patients with HER2-negative primaries, where 33 % of patients showed discordance 
with HER2-positive CTCs [ 8 ]. The unexpected fi nding was that in these 33 % of 
patients, 90 % of the metastatic lesions matched the primary tumour [ 8 ]. Other stud-
ies with similar endpoints have reported HER2 discrepancies of up to 40 % between 
primary tumours and matched CTCs [ 35 ]. This observation brings forward the phe-
nomenon of aggressive characteristics being acquired transitionally to progress 
select cells through individual steps in metastasis such as invasion and intravasation, 
which are lost at later stages not requiring these functions. Logically, it follows 
through that a disseminated tumour cell that is in a transitional state between a pri-
mary and a metastatic tumour should in fact have such a transitional genetic profi le, 
subject to change as it encounters new environments and selective pressures. This 
also explains the difference in genomic profi les of DTCs isolated from lymph nodes 
versus bone marrow [ 36 ]. Furthermore, it is likely that a common set of genomic 
events exists to allow for the survival of cells in this state, for example, HER2 gain 
has been described as the most frequent region of gain in DTCs whether they dis-
seminated via the blood or lymphatic routes, and it is not concordant with the pri-
mary tumours [ 32 ,  36 ]. Other efforts for single-cell gene expression analysis of 
DTCs from three individual patients showed heterogeneous expression of genes 
involved in cell cycle progression (STK12, CCNA), ECM degradation (cathepsins 
B, D, L, uPA, MMP7), invasion (RAC1, ROCK1, CDC42), replication and growth 
arrest (PRKDC, CDKN1A) and highly homogenous expression of an extracellular 
matrix metalloproteinase inducer EMMPRIN, expressed at gene and protein levels 
in 61–82 % of patients with lung, breast and prostate cancer [ 33 ]. 

 Lu et al. addressed the question of EMT and the inadequacy of most of the meth-
ods used to enrich for CTCs or DTCs using epithelial cell markers such as cytokera-
tin19 and EpCAM. It has been proposed that cells in circulation are a subset of 
tumour progenitor cells fi tting the phenotype of aggressiveness, low proliferation 
and resistance to therapy. In this study, CTCs were enriched based on invasive func-
tion rather than inconsistent expression of a marker. The collagen adhesion matrix 
(CAM) selects for cells that are able to invade, remove and ingest CAM fragments 
by formation of invadopodia [ 37 ]. They were able to conclude that the presence of 
invasive CTCs correlated to higher stage, lymph node positivity and poorer survival 
of patients with early breast cancer [ 37 ]. Furthermore, if propagated in culture, the 
gene expression signature of these cells showed that they had properties of EMT 
stem cells expressing TWIST1 and CD44 [ 37 ]. FACS analysis showed that this was 
not a property held by all CTCs, as they could be separated into three distinct popu-
lations highlighting the heterogeneous nature of these cells—one showing epithelial 
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lineage as EpCAM+, the other showing progenitor cell lineage as CD44+ and the 
third showing the intersection of cells expressing both markers. Other tumour- 
specifi c markers expressed were TERT, MUC16, ER and PR [ 37 ]. Surprisingly 
HER2, VIM and other aggressiveness markers were not expressed in a specifi c 
population [ 37 ]. Gradilone et al. have further propelled the idea of CTCs or DTCs 
having a stem cell-like phenotype, whereby they investigated the expression of 
ATP-binding cassette family genes—or the multidrug resistance-related proteins 
(MRPs) [ 35 ]. They reported a signifi cant correlation between the stem cell marker 
ALDH1 and the expression of a number of MRPs, in addition to the co-expression 
of HER2 and ERα in a discordant manner compared to primary tumours [ 35 ]. These 
results taken together paint a clearer picture of aggressive disseminated cells gain-
ing a proliferative, invasive and survival advantage with the divergence of their 
expression profi les. 

 Schwarzenbach et al. attempted to determine the correlation of cell-free DNA, 
DTCs and primary tumours in 22 patients and found that there was no concordance 
between the LOH markers for cell-free DNA in serum and the primary tumours 
(only 3/22 patients showed concordance of LOH status) [ 38 ]. The authors of this 
study speculated that the origin of cell-free DNA could be CTCs, which have a short 
half life in the blood (less than 24 h), and if these cells had originated from multifo-
cal heterogeneous areas of the primary tumour, the LOH discrepancies were well 
founded [ 38 ]. A signifi cant region associated with the relapse of patients with high- 
grade breast cancer was 3p24.2–25, consisting of CDKN2 which is a negative regu-
lator of the cell cycle, the loss of which contributes to increased proliferative 
capacity of tumour cells [ 38 ]. Cells that have left the primary tumour may be more 
similar to the metastases than the primary. Studies carried out on matched primary 
and metastatic tumours support divergence, for example, TP53, KRAS and EGFR 
mutations show 20–80 % discrepancy in colorectal and lung cancers [ 32 ,  36 ]. These 
phenomena again bring attention to the need to treat breast cancer in a systemic 
manner and not just based on the characteristics of the primary tumour. Cells in 
circulation from early time points, present in the absence of lymph node metastases 
or even once the primary tumour has been resected, are persisting threats with 
unique aberrations that lead to distant metastases and must be molecularly defi ned 
in order to target them. 

 Smirnov et al. were able to perform global gene expression profi ling of CTCs 
from prostate, colorectal and breast cancers and elegantly showed that these profi les 
were indeed tissue specifi c, although they also showed some commonality. They 
found that genes such as KRT19 and AGR2 were expressed in CTCs from all sam-
ples and not expressed in normals [ 39 ]. The tissue-specifi c genes were S100A14/16 
and CEACAM5 for breast and colorectal cancers; KLK2/3, MSMB, DDC, AR and 
HPN for prostate cancers; and SCGB2A1/2 and PIP for breast cancers alone [ 39 ]. 
Most of these genes function in cell proliferation, migration and oncogenesis. The 
combination of this gene signature was able to classify tumour and normal correctly 
with 79.3 % accuracy, which was comparable with the classifi cation power of gene 
expression signatures obtained from primary tumours [ 39 ]. 
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 In our own laboratory we have progressed with work aimed at gene expression 
profi ling of DTCs and matched bone metastases in patients with metastatic breast 
cancer. We reported genes that were uniquely expressed in each tumour sample as 
well as a few that were shared across matched samples from the same patients. 
Amongst genes that were more highly expressed in DTCs compared to matched 
bone metastases were cell cycle and cell division-related genes CCNB2, CCNJ, 
CCNM2 and CDCA7L; genes involved in platelet aggregation such as C-type lectins 
and integrin ITGA2B; as well as the actin cytoskeletal gene TUBAL3 (Fig.  10.2 ) 
[ 40 ]. These were in contrast to genes down-regulated which included cadherins 2, 5, 
11 and 15, claudin 5 and collagens COL10A1, 1A1, 1A2 and 8A1 all involved in 
cell–cell and cell–extracellular matrix interactions (Fig.  10.3 ) [ 40 ]. Interestingly, 
HER2 was shared between both DTCs and bone metastases, in addition to chemo-
kine CCL20 and IGF-binding proteins, suggestive of a population of late stage DTCs 
with aggressive proclivity and receptive to signals for reactivation of growth [ 40 ].

    In a separate study, using immunomagnetic sorting and laser capture microdis-
section, we isolated CTCs from the peripheral blood of breast cancer patients with 
and without distant metastases or lymph node metastases. We then amplifi ed the 
whole genome of CTCs as well as matched normal leukocytes from the same patient 
( n  = 17). DNA was processed on the high-resolution Affymetrix Human Genome- 
Wide SNP 6.0 Array, where each tumour sample was normalized using its own 
unique reference sample (normal leukocyte fraction) as a baseline [ 41 ]. Genomic 
copy number gains and losses were identifi ed by a paired sample approach using an 
HMM algorithm (Partek Genomics Suite, version 6.6). Our preliminary analysis 

  Fig. 10.2    Distribution of functionally relevant genes up-regulated in DTCs and down-regulated in 
matched bone metastases from the same patient. DTCs are heterogeneous and likely in a balance 
between proliferation and apoptosis signals that lead to quiescence and growth arrest. They also 
likely express receptors to attract interacting macrophages and platelets that aid in extravasation, 
evasion from the immune system and survival during dormant phases       
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shows that there are a number of regions of altered DNA in CTCs. In general, there 
were signifi cantly more regions with gains compared to losses. The most frequently 
altered regions involved gains of chromosomes 1p36.3, 1q21.3, 4q26, 6q16.3, 8q23, 
9q34.1–q34.3, 11p15.4–15.5, 17q21–25, 20p13, 22q11.2–13.3 and many regions 
across the entire chromosome 19. 

 Our fi ndings are concordant with other studies of genes involved in cancer pro-
gression and metastasis. A recent study performed global gene expression analysis 
of CTCs from patients with breast, prostate and colorectal metastatic cancers. KLK2 
and KLK3 (19q13.4) were a few of the highly expressed genes in CTCs of meta-
static prostate cancer patients [ 39 ]. CEACAM5 (19q13.3) and PIP genes (7q34) 
were highly expressed in CTCs from metastatic breast cancer [ 39 ]. In conjunction 
with expression patterns of a few other candidate genes, this panel was able to dis-
criminate the CTCs by tissue of origin [ 39 ]. Most interestingly, genes belonging to 
the S100 family of calcium- binding proteins (1q21.3) were identifi ed as the stron-
gest candidates for CTC- specifi c expression markers, S100A13 for all types of 
metastatic cancer and more specifi cally S100A14/16 for metastatic breast cancer 
[ 39 ]. Survivin (17q25) has also been found to have elevated gene expression in 
CTCs from patients with breast cancer and was associated with advanced clinical 
pathological markers [ 42 ]. MUC1 (1q21.3) is a widely used marker for all cancers 
[ 1 ,  39 ]. TGFβ (19q13.3) induces expression of angiopoietin-like 4 protein and 
enhances metastatic capacity in oestrogen-receptor-negative breast cancers [ 43 ]. 
ANGPTL4 plays a critical role in the extravasation of tumour cells through endo-
thelial cell–cell junctions in the lung [ 43 ]. In a meta-analysis, out of 3,131 cancers 

  Fig. 10.3    Distribution of functionally relevant genes down-regulated in DTCs and up-regulated in 
matched bone metastases from the same patient. Tumour cells within bone metastases showed 
predominant expression of invasive, cell–cell adhesion and proliferation-related genes. These are 
likely functions down-regulated in DTCs that are in a single-cell-detached state, non-proliferative 
to evade chemotherapy and past the initial stage of metastasis where they invaded the BM to get 
into circulation       
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(26 histological types), 158 regions of altered copy number were identifi ed across 
cancer types [ 44 ]. On chromosome 19q13, this region contained CCNE1 
( p  < 1 × 10 −30 ) [ 44 ]. The importance of intravasation to metastasis was emphasized 
by Zijlstra et al. who recently showed that a function-blocking antibody directed 
toward the integrin-associated protein CD151 (11p15.4) prevents intravasation and 
consequently inhibits metastasis by greater than 90 % [ 45 ]. Genomic gains that are 
characteristic of CTCs may defi ne these cells as the more aggressive component of 
a tumour, capable of invasion, intravasation and survival, and could be developed 
into CTC-specifi c markers to identify and isolate these cells from blood.  

10.5     CTCs and DTCs: Specifi c Functions and Related Genes 

 It is evident that the specialized abilities of single cells that persist independently 
from the primary tumour mass include invasion of the organ microenvironment (pri-
mary and secondary); intravasation into the blood vessels that route them to optimal 
growth or survival niches, survival and dormancy for extended periods of time; and 
aggressiveness whether it is through the successful accomplishment of the many steps 
of the metastatic cascade or their resistance to conventional therapies and novel 
attempts to stop their spread. Each one of these features most likely defi nes a cell at a 
specifi c phase during its molecular evolution. The acquisition of genomic alterations 
that confer specialized functions to these cells could be temporal and  spatial depend-
ing on when and where they intersect a particular step of metastasis. 

10.5.1     Invasion of the Organ Microenvironment 

 Epithelial organs are surrounded by a basement membrane (BM), beyond which is 
a microenvironment consisting of stromal cells (fi broblasts, endothelial cells and 
macrophages). In order for single cells to escape from epithelial primary tumours, 
they need to dissolve and break through the BM and act in concert with the stromal 
cells to eventually gain access to a circulatory blood or lymphatic vessel. 
Deregulation of proteolytic enzymes such as metalloproteinases MMP1 and MMP7 
have been widely implicated in the degradation of the BM [ 46 ]. Various cytokines 
and growth factors such as IL6, CCL2, CCL5, CXCL12, TGFβ, EGF, HGF and 
FGF2 are also released which in turn aid in tumourigenesis via cell proliferation and 
survival [ 46 ]. The tumour cells themselves will go through a reprogramming in 
order to detach, invade and migrate through the degraded BM. This reprogramming 
is termed EMT (epithelial-mesenchymal-transition) and involves the loss of 
E-cadherin, tight junctions and cell polarity proteins and simultaneous up-regula-
tion of N-cadherin, vimentin and various transcription factors: Slug, Snail, Twist, 
ZEB1 and 2 as well as miR-200 family members [ 46 ]. Adbelkarim et al. recently 
showed the in vitro selection of cells that were able to invade Matrigel, a BM, 
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indeed displayed a separate gene expression profi le compared to those cells that 
were less invasive. These cells were defi ned by loss of adhesion to the extracellular 
matrix (ECM), via down-regulation of genes involved in cell–cell adhesion such as 
OCLN, up-regulation of genes involved in EMT and mesenchymal morphology 
such as TGFβ2 and up-regulation of anti- apoptotic genes TIMP-1 and IRAK1 [ 47 ]. 
Additionally, there was down-regulation of cyclin D2 and caspase 4 genes which 
render the cells desensitized to certain types of drug-induced apoptosis [ 47 ]. 
Angiogenesis genes VEGF and NRP-1 were also expressed at a higher level in these 
invasive cells [ 47 ]. 

 Once invasion has occurred, single disseminated tumour cells are in direct con-
tact with stromal cells referred to as carcinoma-associated fi broblasts (CAFs). CAFs 
become activated by tumour progression and are involved in recruitment of infl am-
matory cells and pro-angiogenic factors, growth factors and cytokines such as 
EGFR signalling, IL-4, IL-6, TNFα, TGFβ, CCL2, etc. which form a tumour- 
sustaining microenvironment [ 48 ]. There have been a few studies that performed 
microarray profi ling of tumour-associated stroma and revealed prognostic signa-
tures in stromal cells for metastatic outcome. Finak et al. described a stromal- 
derived prognostic predictor consisting of up-regulated genes in stromal tissue that 
infl uenced the progression of primary breast tumours and was thus able to predict 
patient outcome. Stromal gene signatures were clustered into six distinct biological 
subtypes—matrix remodelling (MMPs, CXCL13, S100 family), immune Th1-type 
response (high interferon), activated fi broblasts, ER signalling (ESR1, FOXA1), 
angiogenic response and a hypoxic-type signature [ 49 ]. Of these, the matrix remod-
elling, angiogenic and activated fi broblast signatures predicted poor outcome [ 49 ].  

10.5.2     Intravasation and Extravasation 

 Intravasation and extravasation involve the migration of a tumour cell into or out of 
the lumen of a lymphatic or blood vessel. Some studies have shown that the entry of 
tumour cells into vessels is infl uenced by a chemoattractant gradient involving 
tumour-associated macrophages (TAMs) [ 48 ]. EGF is produced by TAMs which 
interacts with the EGF receptor expressed on tumour cells, and conversely, CSF-1 
expressed by tumour cells interacts with the CSF-1 receptor on macrophages leading 
to a synergistic movement of tumour cells enhanced by TAMs into the blood vessels 
[ 46 ,  48 ]. In addition, tumour cells express VEGF that stimulates the production of 
new blood vessels—neoangiogenesis. These vessels possess dual functions: to trans-
port tumour cells into and out of the main circulatory system as well as feed a grow-
ing tumour with a dedicated blood supply. These new blood vessels tend to be not as 
structurally sophisticated as the body’s main circulatory system; they are leaky and 
not well formed, which facilitates the movement of tumour cells through them [ 46 ]. 

 One striking difference between the mechanisms of intravasation and extravasa-
tion is the microenvironment. Once CTCs or DTCs have arrived at their secondary 
site of arrest, they must extravasate from the circulatory system’s vasculature into a 
new organ microenvironment, the only major difference being the absence of a 
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pre- existing primary tumour. Essentially the blood vessels and BM in this case are 
lacking CAFs, TAMs and leaky neoangiogenic blood vessels. Surprisingly, it was 
shown that these barriers are overcome by the same distant primary tumour by 
secreting signalling molecules such as lysyl oxidase, which results in the migration 
of VEGF receptor expressing haematopoietic progenitor cells from the bone mar-
row to a predetermined metastatic site [ 46 ]. These cells then prime the new site with 
EREG, COX-2, MMP-1, MMP-2, ADAMTS1 and VEGF to aid in the disruption of 
endothelial cell-cell junctions for extravasation to occur [ 46 ]. An up-regulation of 
ANGPTL4 has been reported in the lungs specifi cally [ 43 ]. This organ-specifi c 
response is likely to be seen within the genetic architecture of the extravasating cell 
itself, probably early on, and is the focus of future studies which isolate tumour cells 
en route to distant sites of arrest.  

10.5.3     Survival and Dormancy 

 It is still relatively unknown as to how long CTCs and DTCs are alive in circulation. 
They must overcome the fi rst response—anoikis, which is apoptosis as a result of 
lack of cell–cell interaction once it has detached from the primary tumour. Next, 
these cells must evade shear stress forces fl owing through the blood vessels that 
were designed for optimal fl ow of white blood cells with much smaller diameters 
(8 μM versus 20–30 μM) [ 6 ]. Lastly, these cells must go undetected by the immune 
responses. Tumour cells have been shown to attach themselves to platelets, forming 
microemboli which are able to accomplish evasion from immune detection as well 
as decrease shear forces of the blood vessels directly acting upon them [ 46 ,  48 ]. 
Platelet aggregation occurs via the expression of L/P selectins or tissue factors 
which bind coagulation factors of platelets [ 46 ]. Others have also suggested a 
macrophage- tumour cell hybrid which is formed transiently allowing survival until 
it reaches its secondary site [ 48 ]. 

 Another attribute of CTCs and DTCs is to, in essence, reverse or silence their 
acquired invasiveness, uncontrolled proliferation and angiogenic properties and enter 
a state of dormancy at a distant site. In the case of breast cancers, metastatic second-
ary tumours may arise after dormant periods of 20 or more years. Some studies have 
suggested that tumour cells are in fact still dividing but also undergoing apoptosis, 
and it is this balanced proliferation and death that prevents the formation of macro-
metastases at secondary sites [ 26 ]. Nonetheless, dormant tumour cells may very well 
be the rare tumour-initiating cells or stem cells that are quiescent, in G 0 –G 1  arrest, 
and resistant to chemotherapy. Activation of metastasis-suppressor genes such as 
NM23 and KISS1 has been shown to reduce metastatic output in mouse models, as 
has moderate activation of the stress pathway JNK/p38 which will not induce apop-
tosis but rather growth arrest [ 26 ]. This state continues until these cells receive posi-
tive signals from the secondary microenvironment to start proliferation, most likely 
growth factors, chemokines, or up-regulation of proliferative pathways via EGFR or 
MAPK, for example, high EGFR/p38 ratios permit proliferation, compared to the 
aforementioned high p38 stress response which would propagate dormancy [ 26 ].   
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10.6     Clinical Value of Cells in Circulation 

 The application of early screening and adjuvant therapies has certainly led to a 
decrease in mortality; however, it has in return created a population of larger num-
bers of patients who require benefi cial targeted therapies. Overtreatment and under-
treatment of patients remain a problem, and clinicians and scientists strive to better 
defi ne markers of optimal prognostic and predictive value. The current standard of 
care that guides treatment options involves a comprehensive analysis of the primary 
tumour for clinicopathological parameters such as tumour size, grade, lymph node 
involvement, lymphovascular invasion and the status of hormone receptors ER/PR 
and the HER2 receptor [ 25 ]. Signifi cant progress beyond these standards is yet to be 
made, although new markers such as Ki 67, cyclin D1, and cyclin E and various 
multigene assays such as MammaPrint and Oncotype DX are emerging as promis-
ing markers which are useful in conjunction with existing tools [ 25 ]. Another 
emerging fi eld of biomarkers is microRNAs, where several miRNAs—10b, 21, 31, 
126, 335 and 373 have been correlated with metastatic outcome [ 46 ]. The mere 
presence of CTCs and DTCs in patients with breast cancer is a negative prognostic 
indicator; however, the 2007 recommendations of the American Society of Clinical 
Oncology have not approved their use pending larger-scale studies with more defi n-
itive and consistent results [ 50 ]. Breast cancer is not a single disease but rather is 
comprised of various subtypes with characteristic gene expression profi les and 
prognostic markers [ 20 ]. Therefore, the use of multiple markers to assess metastatic 
propensity will be more benefi cial. 

 There have been several studies that showed that the presence of DTCs in the 
bone marrow of patients with primary breast cancer has a negative prognostic 
impact. A multicenter retrospective study included 4,703 patients with metastatic 
breast cancer across Europe and the USA and concluded that over a 10-year follow-
 up period, patients with DTCs had signifi cantly decreased overall and disease-free 
survival compared to patients who did not have DTCs in their bone marrow [ 51 ]. 
Presence of DTCs was also correlated with higher tumour grade, presence of lymph 
node metastases as well as overt metastases, and a poorer prognosis, independent of 
tumour size [ 51 ]. Since there is the issue of invasiveness and patient discomfort 
when it comes to obtaining repetitive bone marrow samples for the isolation of 
DTCs, as well as the diffi culty in obtaining metastatic samples, CTCs measured in 
a blood sample provide an easy to collect and relatively non-invasive method of 
monitoring disease progression and its response to therapies in real time, providing 
prognostic information by probing for specifi c molecular markers. The prognostic 
relevance of CTCs in metastatic breast cancer has also been demonstrated by numer-
ous groups, pioneered by a prospective study where 177 metastatic breast cancer 
patients were shown to have a reduced overall and disease-free survival if they had 
fi ve or more CTCs per 7.5 mL of blood [ 52 ]. In a follow-up study with the same 
group of patients, it was reported that the number of CTCs was a better indicator of 
disease progression than traditional techniques such as imaging with PET, CT or 
MRI scans [ 53 – 56 ]. Ignatiadis et al. were one of the fi rst groups to show prognostic 
importance of CTCs present in the blood of early breast cancer patients and have 
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been succeeded by larger cohorts such as the German SUCCESS trial of 1,489 
patients which recently showed that the presence of even one CTC had prognostic 
value in early breast cancer [ 57 ]. 

 A study found that metastatic breast cancer patients treated with chemotherapy 
or endocrine therapy, with fi ve or more CTCs, were 6.3 times more likely to have 
radiographic disease progression compared with patients who had less than fi ve 
CTCs [ 56 ]. Using enumeration of CTCs as an endpoint, it has been shown that 
patients who respond well to systemic chemotherapy show a decrease in CTC num-
ber. Pachmann et al. and Xenidis et al. showed that patients treated with tamoxifen 
who had persisting CTCs were more likely to relapse and had shorter disease-free 
and overall survival [ 58 ,  59 ]. Similarly a study of 696 patients showed that the per-
sistence of DTCs in patients after chemotherapy was an indicator of relapse and 
reduced survival [ 60 ]. Sequencing of EGFR mutations from primary tumours and 
CTCs of the same patients has enabled the identifi cation of the evolution of tumour 
resistance during the course of treatment of small cell lung cancers with EGFR 
tyrosine kinase inhibitors [ 61 ]. Regions of aberrant DNA were observed in CTCs 
that were absent in corresponding primaries, and vice versa, providing novel targets 
to study mechanisms of resistance [ 61 ]. There are ongoing studies such as 
GeparQuattro and SUCCESS which will determine whether these decreases in CTC 
number are associated with better prognosis and improved survival of patients [ 1 ].  

10.7     Conclusions and Future Perspectives 

 The presence of DTCs and CTCs is now an established phenomenon in early stage 
as well as metastatic breast cancer. Currently, researchers are narrowing in on arrays 
of markers which when combined are able to paint a much more accurate and infor-
mative picture of how early these cells disseminated (analysis of the extent of 
genomic instability and genetic aberrations), the degree of their metastatic potential 
(analysis of known markers of aggressiveness such as HER2, EGFR and EMT 
markers such as TWIST, VIM), potential response to a selected regimen of systemic 
therapy (evolution of HER2 and EGFR status discordant from the primary tumours, 
expression of stem cell markers CD44, ALDH1, low proliferative marker via Ki67), 
as well as which secondary soil they are destined to ‘seed’ (cytokines and growth 
factors specifi cally expressed in the lungs or bone). Clinically, the prognostic rele-
vance of cells in circulation is becoming increasingly evident as multicenter pro-
spective investigations including thousands of patients provide conclusive results of 
few numbers of disseminated cells being associated with poorer patient survival and 
response to treatments. Cutting-edge advancements such as next-generation 
sequencing and whole genome amplifi cation of single cells for high-resolution 
genetic analysis will shed more light on the heterogeneity that underlies fi rst- and 
second-generation expression profi les of primary tumours alone. A study on intra-
tumoural heterogeneity using interphase FISH techniques showed that there are dis-
tinct chromosomal regions which are gained through aneuploidy that defi ne a 
pro-metastatic type of cell [ 62 ]. Interestingly they also found that in a proportion of 
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cases, a minor clone present in the primary tumour was the most highly represented 
clone in its metastases [ 62 ]. Another study attempted to classify primary ductal 
breast carcinomas as ‘monogenomic’ tumours with a more homogenous genome 
profi le or as ‘polygenomic’ tumours with multiple subpopulations of genomic 
clones [ 63 ]. They analysed individual tumours as sectors using both aCGH and 
FISH techniques. Their results showed a signifi cant proportion of both tumour 
types, where polygenomic tumours had up to three major tumour subpopulations 
with clear clonal evolution [ 63 ]. Such studies bring forward not only the collective 
profi les necessary for the progression of tumour cells through the steps of metasta-
sis but also highlight the specifi c differences seen in this heterogeneous cell popula-
tion to enable the formation of new hypotheses to be tested with regards to 
tumour-initiating aggressive subpopulations which must be targeted. 

 Exploration of this novel fi eld of prognostic and diagnostic relevance warrants 
the recognition of important caveats—a standardized marker does not exist for the 
selection of single disseminated cells from the blood or bone marrow. Thus, we can-
not avoid biased enrichment of subpopulations, which will differ across separation 
platforms, patient cohorts and lead to discrepant conclusions to the same research 
questions. As with gene expression profi les of primary tumours, it is also observed 
that gene expression profi les of single DTCs and CTCs are quite heterogeneous 
with minimal overlap across studies. It is likely that although the genes up- or down- 
regulated in the snapshot of malignant progression in samples may be different, we 
must make note if they are part of the same umbrella functional pathway and if they 
will lead to similar endpoints (relapse or survival), as well as if these endpoints are 
concordant with current prognostic assays—clinical markers, pathological immu-
nohistochemical markers and array-based tests such as MammaPrint and the multi-
plex RT-PCR assay, Oncotype DX. 

 In conclusion, CTCs and DTCs might be the earliest detectable cells with meta-
static abilities and are emerging as promising biomarkers for breast cancer progres-
sion. These cells may affect cancer prognosis years before the onset of overt 
metastasis and therefore improve risk assessment and help identify patients in need 
of additional treatment. The cells themselves may provide new targets for therapy to 
prevent their spread to distant sites. By profi ling the whole genome of CTCs and 
DTCs, we can identify novel genomic alterations specifi c to cells in transition, 
which may be utilized in the development of specifi c markers for circulating cells in 
the blood and bone marrow. Altered genomes, transcriptomes and proteomes in 
circulating cells from early breast cancer patients hold valuable prognostic genetic 
information about the progression of early breast cancer to metastasis.     
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    Abstract     In this chapter, we review the central roles that epigenetic mechanisms, 
including DNA methylation, histone posttranslational modifi cations, and nucleo-
some positioning, play in governing gene expression and how their dysregulation 
contributes to carcinogenesis. Dramatic improvements in high-throughput DNA 
sequencing, so-called next-generation technologies, have driven a veritable revolu-
tion in the large-scale assessment of cellular “epigenomes.” We also review several 
reports that have profi led epigenomic differences between normal tissue and diverse 
types of breast tumors, emphasizing how they inform our understanding of disease 
complexity and the utility of epigenetic-based therapies for breast cancer treatment. 
Finally, we discuss a methodology that interrogates multiple epigenetic as well as 
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genetic features at the single-molecule level and how it may be utilized to increase 
our understanding of intratumoral heterogeneity.  

  List of Abbreviations 

   5-aza    5-Azacytidine, DNA demethylating agent   
  ACTR    AIB1, RAC3, and TRAM1, transcriptional coactivator   
  ADD    ATRX-DNMT3A-DNMT3L, cysteine-rich domain in 

DNMT3L that interacts with H3 unmethylated at K4   
  APC    Adenomatous polyposis coli, tumor suppressor gene   
  ATP    Adenosine triphosphate   
  ATRX    Alpha-thalassemia X-linked mental retardation, ATP- 

dependent helicase chromatin remodeler   
  BGS    Bisulfi te genome sequencing   
  BRCA1    Breast cancer 1 susceptibility protein   
  BRCA2    Breast cancer type 2 susceptibility protein   
  BRG1    Brahma-related gene 1, part of the large ATP-dependent 

chromatin remodeling complex SWI/SNF   
  Bromodomain    Protein domain that preferentially binds acetylated lysine   
  CDK    Cyclin-dependent kinase   
  CDKN1A    Cyclin-dependent kinase inhibitor 1A   
  Cfp1    CXXC fi nger protein 1, binds non-methylated CGs in a 

majority of CGIs and associates with the human Set1 
complex   

  CG/CpG    Dinucleotide with cytosine followed by guanine   
  CGI    CG island   
  C/EBPα    CCAAT/enhancer binding protein alpha, binds respon-

sive elements and recruits coactivators   
  C/EBPβ    CCAAT/enhancer binding protein beta, binds responsive 

elements and recruits coactivators   
  ChIP    Chromatin immunoprecipitation   
  ChIP-seq    ChIP followed by next-generation sequencing   
  Chromo    Chromatin organization modifi er, domain in chromatin- 

interacting proteins that binds to methylated histones   
  CIMP    CGI methylator phenotype   
  CREB1    Cyclic AMP-responsive element binding protein 1, stim-

ulates transcription   
  CSC    Cancer stem cell   
  CTCF    CCCTC-binding factor, site-specifi c DNA-binding fac-

tor with 11 zinc fi ngers that organizes chromatin   
  DNMT    DNA methyltransferase   
  Dnmt1    DNA methyltransferase 1; maintenance methyltransferase   
  Dnmt3A    DNA methyltransferase 3A2; de novo methyltransferase   
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  Dnmt3B    DNA methyltransferase B; de novo methyltransferase   
  Dnmt3L    DNA methyltransferase 3 like; no enzymatic activity   
  DOT1L    DOT1 (disruptor of telomeric silencing) like, histone H3 

methyltransferase   
  E2F1    E2F transcription factor 1   
  ER    Estrogen receptor   
  ERE    Estrogen-responsive element   
  ES cells    Embryonic stem cells   
  EZH2    Enhancer of zeste homolog 2; the methyltransferase 

component of PRC2 that trimethylates H3K27   
  FOXA1    Forkhead box protein A1, transcriptional activator   
  FOXP3    Forkhead box P3, transcription factor involved in 

immune response   
  GCN5    General control non-derepressible 5   
  H2A, H2B, H3, and H4    Core histones 2A, 2B, 3, and 4, respectively   
  H3K4    The fourth residue, K or lysine, on the N-terminus of 

histone H3   
  H3K9    The ninth residue, K or lysine, on the N-terminus of 

 histone H3   
  H3K27    The 27th residue, K or lysine, on the N-terminus of 

 histone H3   
  HAT    Histone acetyltransferase   
  HBO1    Human acetylase binding to ORC1, a HAT   
  HCC1954    Adherent, invasive ductal carcinoma cell line, ER and 

PR negative, HER2 overexpressed   
  HDAC    Histone deacetylase   
  HER2    Human epidermal growth factor receptor 2   
  HMEC    Human mammary epithelial cells   
  HP1    Heterochromatin protein 1, involved in gene repression   
  ICR    Imprinting control region   
   IGF2      Insulin - like growth factor 2 , an imprinted gene   
  IL-6 and IL-8    Interleukin 6 and 8 respectively, cytokines   
  KAT    Lysine acetyltransferase   
  KMT    Lysine methyltransferase   
  LMR    Low-methylated regions   
  LOI    Loss of imprinting   
  LSD1 (KDM1)    Lysine-specifi c demethylase 1, demethylates H3K4me2 

to H3K4me1 or H3K4me0   
  m 5 C    Cytosine methylated on carbon 5   
  MAPit    Methyltransferase accessibility protocol for individual 

templates   
  MBD    Methyl-CG-binding domain   
  MBP    Methyl-CG-binding protein   
  MCF10A    Spontaneously immortalized, disease-free human mam-

mary epithelial cell line   
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  M.CviPI    First DNA methyltransferase from  Chlorella virus  P   
  MDA-MB-231    Invasive, adherent mammary adenocarcinoma cell line, 

ER negative, mutant p53   
  MDS    Myelodysplastic syndrome, hematological condition 

that often progresses to acute myelogenous leukemia   
  MeCP2    Methyl-CpG-binding protein 2, transcriptional regulator   
  MEK/ERK    Chain of extracellular signal-regulated kinases down-

stream of mitogen-activated Ras pathway   
  miRNA    MicroRNA, small noncoding RNA that regulates gene 

expression   
   MLH1     MutL homolog 1, TSG that encodes a mismatch repair 

protein   
   MLL     Myeloid/lymphoid, or mixed-lineage, leukemia protein, 

an HMT   
  MMTV    Mouse mammary tumor virus   
  MMTV-PyMT    Transgene encoding the MMTV long terminal repeat 

promoter upstream of the polyoma virus middle T anti-
gen. Transgenic females develop palpable mammary 
tumors at 5–40 weeks of age that metastasize to the lung 
with 80–94 % incidence   

  NaB    Sodium butyrate   , HDAC inhibitor   
  ncRNA    Noncoding RNA   
  NDR    Nucleosome-depleted region   
  NFR    Nucleosome-free region   
  NURF    Nucleosome remodeling factor, ISWI-containing chro-

matin remodeling complex that catalyzes ATP-dependent 
nucleosome sliding   

  ORC1    Origin recognition complex subunit 1   
  OSN    Osteopontin, small integrin-binding ligand  N -linked 

glycoprotein   
  p15 INK4B     Cyclin-dependent kinase inhibitor protein, inhibits cell 

cycle progression   
  p300    E1A binding protein p300, transcriptional coactivator 

with HAT activity   
  p53    Protein 53 kDa, a tumor suppressor   
  PcG    Polycomb group   
  PCNA    Proliferating cell nuclear antigen   
  PHD    Plant homeodomain, protein domain that binds to vari-

ous forms of methyl-lysine   
  PR    Progesterone receptor   
  PRC2    Polycomb repressive complex 2; the complex trimethyl-

ates H3K27, a mark associated with inactive 
transcription   

  RAD51    Radiation sensitive 51, RecA homolog involved in homol-
ogous recombination at DNA double-strand breaks   

  RAS    Rat sarcoma, family of small GTPases   

N.H. Nabilsi et al.



215

  RB    Retinoblastoma protein   
  RNAi    RNA interference   
  SAHA    Suberoylanilide hydroxamic acid, HDAC inhibitor   
  SANT    Swi3, Ada2, N-CoR, and TFIIIB   
  SATB1    Special AT-rich sequence-binding protein 1, global chro-

matin organizer   
  SET    Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax   
   SIM2      Single - minded 2  gene, putative TSG in breast   
  SNF5    Sucrose non-fermenting 5, core subunit of the SWI/SNF 

chromatin remodeling complex   
  SUV39H1    Suppressor of variegation 3-9 H1, H3K9 KMT   
  SWI/SNF    Switch/sucrose non-fermenting; ATP-dependent chro-

matin remodeling complex   
  TBP    TATA binding protein   
   TET1 – 3     Chromosome  ten - eleven translocation 1 – 3 , three sepa-

rate genes encoding methylcytosine dioxygenases   
  TFIID    Transcription factor IID   
  TGF-β    Transforming growth factor beta, cytokine   
  TNF    Tumor necrosis factor   
  TRAIL    TNF-related apoptosis-inducing ligand, cytokine   
  TRIM24    Tripartite motif-containing 24, an E3 ubiquitin ligase   
  TSA    Trichostatin A, HDAC inhibitor   
  TSG    Tumor suppressor gene   
  TSS    Transcription start site   
  UHRF1    Ubiquitin-like plant homeodomain and RING fi nger 

domain-containing protein 1, binds hemimethylated 
DNA and recruits HDACs   

  VPA    Valproic acid, HDAC inhibitor   

11.1           Introduction 

 Breast cancer remains a worldwide clinical problem largely due to substantial 
molecular heterogeneity that complicates disease diagnosis and treatment deci-
sions. Importantly, the frequency and degree of disease heterogeneity cannot be 
explained solely by genetic determinants. The discovery of and crucial control 
exerted over gene expression by epigenetic mechanisms that do not alter DNA 
sequence have placed them at the front line of cancer research. Breakdown in the 
tightly interwoven, but dynamic, regulation of these various epigenetic layers facili-
tates abnormal patterns of gene expression that, in turn, disrupts genome homeosta-
sis and proper cell behavior. Epigenetic perturbations have been found at early 
stages of breast carcinogenesis and additionally in every cancer type studied to date 
and thus qualify as major determinants of cancer initiation and progression. Unlike 
diseases that involve genetic mutation, those driven by epigenetic alterations are 
potentially reversible and therefore constitute attractive therapeutic targets. 
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11.1.1     DNA Methylation 

 In differentiated mammalian cells, DNA methylation takes place largely, if not 
exclusively, at carbon 5 of the cytosine ring (m 5 C) within CpG dinucleotides (here-
after, CG). Mammalian genomes are depleted for CG due to spontaneous hydrolytic 
deamination of methylated CG to TG over evolutionary time [ 1 ,  2 ]. By contrast, in 
conspicuously GC-rich regions known as CG islands (CGIs), CG frequency 
approaches the expected value, after normalizing for overall genomic G+C compo-
sition [ 3 ]. Approximately 60–70 % of human gene promoters contain one or more 
CGI within –2 kb to +1 kb of their transcription start site (TSS) [ 4 – 6 ]. The majority 
of housekeeping gene promoters possess at least one CGI, whereas only 40 % of 
promoters of tissue-specifi c genes do [ 7 – 9 ]. While most CG sites distributed 
throughout the genome are methylated (75 % of total CGs), CGs associated with 
promoter CGIs are maintained in an unmethylated state. Unmethylated CGIs are 
characterized by transcriptionally permissive chromatin that allows effi cient gene 
expression in response to appropriate transcription factors [ 8 – 10 ]. Only 6 % of 
tissue- specifi c CGIs become methylated during early development or in differenti-
ated tissues, rendering the associated genes transcriptionally silent [ 11 ,  12 ]. In gen-
eral, promoter CGI hypermethylation has been strongly associated with stable 
transcriptional silencing. Not surprisingly, then, CGIs are crucial epigenetic regula-
tory sites in the genome (reviewed in [ 13 – 17 ]). Transcriptional silencing by pro-
moter CGI methylation is thought to be dependent on the density of methylated 
CGs; however, detailed analysis of specifi c CG sites within a promoter CGI has 
provided evidence for regulation by a subset of CpG sites with crucial regulatory 
roles [ 18 ,  19 ]. Likewise, methylation of recently described CGI “shores,” areas low 
in CG density located as far as 2 kb away from CGIs, has been shown to correlate 
with changes in gene expression [ 20 ,  21 ]. This regulation occurs irrespective of the 
methylation status of the CGI proximal to the promoter. CGI shores can also be 
methylated in a tissue-dependent manner, suggesting a role in alternative TSS usage. 

 A signifi cant number of CGIs reside within intragenic regions and at the 3′ end 
of genes rather than within gene promoters. While such CGIs tend to be methylated, 
their role in transcription is not well understood; however, several lines of evidence 
point towards transcriptional silencing. Therefore, hypermethylated CGIs largely 
correlate with transcriptional downregulation, regardless of a genic  versus  inter-
genic location. A subset of intragenic CGIs may be associated with TSSs of unchar-
acterized genes with highly regulated expression patterns. For example, it has been 
shown that rare transcripts expressed during specifi c developmental stages originate 
from TSSs localized within intragenic CGIs [ 22 – 25 ]. Alternatively, intragenic CGIs 
can be associated with TSSs of regulatory noncoding RNAs (ncRNAs) or antisense 
transcripts, which can negatively regulate transcription of the primary gene with 
which they are associated. Prominent examples include  HOTAIR  [ 26 ],  AIR  [ 27 ], and 
 XIST  [ 28 ], which participate in epigenetic silencing of the  HOXD  gene cluster dur-
ing mammalian axial development, the paternally imprinted  Igf2r / Slc22a2 / Slc22a3  
gene cluster, and one of the two X chromosomes in female mammals, respectively. 
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As mentioned above, at locations outside of known promoters, CGIs are prone to 
methylation that represses expression of these highly regulated transcripts or 
ncRNAs [ 29 ,  30 ]. In the same manner, and consistent with the high degree of CG 
methylation found at non-CGI locations, gene bodies of ubiquitously expressed 
genes are characterized by high levels of CG methylation. Gene body methylation 
has been proposed to protect against spurious transcription and to promote effi cient 
transcriptional elongation [ 30 – 32 ]. 

 Although largely correlated with promoter silencing, there are instances in which 
CG methylation promotes gene activation. As an archetype of this type of regula-
tion, paternal methylation of the  H19 / Igf2  imprinting center in the mouse relieves 
DNA-binding and enhancer-blocking activity of the insulator protein CTCF, allow-
ing activation of  Igf2  expression [ 33 – 35 ]. Likewise, loss of CTCF binding due to 
DNA methylation of a CGI in the fi rst intron of the human  BCL6  gene upregulated 
its transcription in lymphoma cells [ 36 ]. As opposed to the classical paradigm 
whereby DNA methylation blocks protein–DNA interactions, recent work of Vinson 
and colleagues has shown that DNA methylation enhances binding of C/EBPα and 
C/EBPβ to half cAMP-responsive elements [ 37 ,  38 ]. C/EBPα associates with meth-
ylated promoters with low CG content (i.e., non-CGI) to drive active transcription 
of several hundred differentiation-specifi c genes. 

 DNA methylation in vertebrates is catalyzed by the C-5 DNA methyltransferase 
(DNMT) family of enzymes, which enlist the universal methyl donor  S -adenosyl- l - 
methionine . At least three DNMTs, namely, DNMT1, DNMT3A, and DNMT3B, 
are responsible for establishing and/or maintaining DNA methylation patterns in 
mammals [ 39 ,  40 ]. DNMT1 was the fi rst mammalian DNMT described [ 41 ]. The 
enzyme is essential for embryonic development and is required to maintain bulk 
genomic methylation as shown by a mouse genetic knockout [ 42 ]. These studies 
and a 30- to 60-fold preference for hemimethylated DNA [ 10 ,  43 – 45 ] have led to 
the view that DNMT1 is the maintenance enzyme, despite its prominent de novo 
DNMT activity in biochemical studies [ 46 ]. Complete knockout of  DNMT1  in dif-
ferentiated cells results in p53-mediated cell death [ 47 ]. Interestingly, knockout of 
 DNMT1  in human colorectal cancer cells also results in cell death, suggesting that 
cancer cell survival is dependent on DNMT1 activity as well [ 48 ]. 

 DNMT1 is highly and ubiquitously expressed in proliferating cells, whereas low 
levels of the protein are present in nondividing cells. The transcript encoding 
DNMT1 also exhibits cell cycle-dependent regulation, achieving maximal levels 
during S phase [ 43 ,  47 ,  49 ,  50 ]. Additionally, DNMT1 interacts with the DNA 
polymerase- associated proliferating cell nuclear antigen (PCNA), which localizes 
to replication forks during S phase [ 51 ]. Association of DNMT1 with PCNA is 
essential for post-replicative conversion of hemi- to dimethylated DNA and thus 
maintenance of genomic patterns of DNA methylation [ 52 – 54 ]. Recently, DNMT1 
has also been shown to interact with the ubiquitin-like plant homeodomain and 
RING fi nger domain-containing protein 1 (UHRF1), which binds to hemimethyl-
ated DNA [ 55 – 57 ]. This provides an additional mechanism for recruiting DNMT1 
to hemimethylated DNA, possibly in stages of the cell cycle other than S phase. 
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 DNMT3A and DNMT3B are referred to as de novo DNMTs and are thought to 
be responsible for establishing DNA methylation patterns, especially during early 
embryogenesis and germ cell development. Consistent with this view, the de novo 
DNMTs are highly expressed in embryonic tissues and undifferentiated embryonic 
stem (ES) cells and are downregulated in differentiated cells [ 16 ,  48 ,  58 ]. In contrast 
to DNMT1, DNMT3A and DNMT3B have no activity preference for hemimethyl-
ated over unmethylated DNA [ 45 ,  58 ]. A third member of the DNMT3 family, DNA 
methyltransferase 3-like (DNMT3L), is a catalytically inactive regulatory factor 
that directly interacts with and stimulates enzymatic activity of DNMT3A and 
DNMT3B [ 59 ,  60 ]. Targeted deletions of  Dnmt3a  and  Dnmt3b  in mouse models 
have demonstrated that the enzymes are essential for normal development [ 42 ,  58 ]. 
Interestingly, DNMT3A and DNMT3B can also catalyze non-CG methylation at 
CA and CT dinucleotide sites [ 61 ]. Non-CG methylation is prevalent in ES cells 
where it constitutes as much as 25 % of the DNA methylation content [ 62 – 64 ]. The 
biological function(s) of non-CG methylation remains unknown, although the mod-
ifi cation is crucial for hematopoiesis, pluripotent stem cell differentiation, epigene-
tic reprogramming of zygotes, and leukemogenesis [ 65 ,  66 ]. 

 The classifi cation of DNMTs as either maintenance or de novo enzymes is an 
oversimplifi cation, as several observations suggest that mechanisms by which DNA 
methylation is established and maintained are more complex than previously appre-
ciated. For example, members of the DNMT3 family are required for maintenance 
of DNA methylation patterns of certain sequences, and DNMT1 cannot maintain 
established patterns of DNA methylation in ES cells in the absence of DNMT3 
members [ 67 ,  68 ]. In other cases, DNA methylation patterns are maintained in the 
absence of DNMT1 [ 58 ,  67 ,  68 ]. 

 DNA hypermethylation strongly correlates with repression or silencing of tran-
scription in both normal and pathological regulatory environments, such as silenc-
ing of tumor suppressor gene (TSG) expression in cancer. While the precise 
mechanisms by which DNA methylation affects transcriptional activity remain elu-
sive, two main views have emerged. The presence of methyl groups on the C-5 atom 
in the major groove can directly interfere with transcription factors binding to DNA 
elements, such as CREB1 binding to its cAMP-responsive element [ 37 ,  69 ]. 
Alternatively, transcription of methylated sequences can be silenced by methyl-CG- 
binding proteins (MBPs) [ 70 – 76 ]. A subset of MBPs contain domains that bind to 
5-methyl-C, that is, methyl binding domains (MBDs), in various sequence contexts 
[ 77 ]. MBPs, such as the founding member methyl-CG-binding protein 2 (MeCP2), 
have been shown to be components of stable biochemical complexes that contain 
histone-modifying enzymes, such as histone deacetylases (HDACs) [ 70 ,  71 ,  78 ], 
which generally exert a repressive effect on transcription. Further evidence for the 
coordinated action of MBPs and HDACs comes from the observation that HDACs 
interact with chromatin remodeling complexes that also repress transcription [ 73 , 
 79 ]. These early studies seeded the idea that transcriptional gene silencing mediated 
by DNA hypermethylation involves coordination between histone modifi cations 
and nucleosome occupancy/positioning, which regulates the access of  trans -acting 
factors to DNA. It should be noted that, using domains distinct from its MBD, 
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MeCP2 is able to bind to and mediate higher-order folding of chromatin fi bers con-
taining unmethylated DNA [ 80 – 82 ], which may contribute to repression of tran-
scription independent of histone deacetylation.  

11.1.2     Nucleosome Positioning 

 Epigenetic regulation by DNA methylation within the eukaryotic nucleus occurs in 
the context of chromatin, the full complement of DNA associated with histone and 
nonhistone proteins. Chromatin can be subdivided into two broad classes: transcrip-
tionally active euchromatin and inactive heterochromatin. These chromatin states 
profoundly infl uence diverse biological activities, including replication, repair, 
recombination, transcription, and mitotic chromatin condensation. The fundamental 
repeating unit of eukaryotic chromatin is the nucleosome, which is organized into 
arrays along chromosomes. Each nucleosome consists of a core particle, the histone 
octamer (two copies each of histones H2A, H2B, H3, and H4) wrapped by 1.65 
turns (~147 bp) of DNA, plus a variable length of histone-free linker DNA [ 83 ]. 

 The location of nucleosomes relative to each other and to a given point in DNA 
is termed translational positioning. Generally, access to DNA in nucleosome cores 
is impaired, especially at sites closer to the pseudodyad center. By contrast, 
sequences within linkers between nucleosome cores are relatively accessible to 
DNA-binding factors. Thus, nucleosome positioning is a key mechanism for regu-
lating accessibility of  trans -acting factors to their cognate  cis -binding sites and 
hence the biological activity of DNA (reviewed in [ 84 ]). 

 The advent of innovative nucleosome mapping techniques that use next- 
generation sequencing has led to a proliferation of genome-wide analyses of nucleo-
some positioning (reviewed in [ 85 ]). A consistent theme emerging from these studies 
is the conserved, nonrandom positioning of nucleosomes across budding yeast, 
 Drosophila ,  C .  elegans , and human genomes. In the yeast genome, which has been 
extensively studied due to its small size, the propensity of a given DNA sequence to 
position nucleosomes is determined in part by its ability to bend around the histone 
octamer surface [ 86 ,  87 ]. Sequence-dependent fl exibility of DNA explains the posi-
tioning of ~50 % of nucleosomes in the yeast genome, suggesting that other cellular 
events must govern nucleosome positioning in vivo (reviewed in [ 88 ]). 

 Thus, another nonrandom, highly conserved feature of genomic chromatin is the 
organization of open regions of chromatin, termed nucleosome-depleted regions 
(NDRs; also called nucleosome-free regions, NFRs), at regulatory regions, such as 
promoters and enhancers (reviewed in [ 84 ,  89 – 91 ]). In particular, at the 5′ end of 
genes, NDRs are located just upstream of or encompass the TSSs of transcription-
ally permissive promoters. In humans, most promoters that contain CGIs and are 
transcriptionally active maintain an organization with an ~200 bp NDR localized 
upstream or near the TSS [ 92 ]. The open chromatin of NDRs at many promoters is 
thought to play a crucial role in transcription by presenting a platform for assembly 
of the basal transcriptional machinery. Consistent with this, in colon cancer cells, 
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we and others have shown loss of a promoter NDR that correlates with CGI hyper-
methylation and transcriptional silencing [ 93 ,  94 ]. 

 Importantly, even though the presence of an NDR is compatible with and sup-
ports transcriptional activation, it is not suffi cient for transcription to occur. Many 
genes that are transcriptionally quiescent, but poised, share this stable and common 
open chromatin conformation [ 95 – 97 ]. Conversely, some constitutively repressed 
tissue-specifi c genes and some highly inducible genes lack NDRs and have a posi-
tioned nucleosome immediately upstream of their TSS [ 98 ,  99 ]. 

 Promoter NDRs are fl anked by arrays of positioned nucleosomes, usually dis-
cernible for two upstream (–2 and –1) and as many as six downstream (+1 to +6) 
nucleosomes. Each of these nucleosomes becomes progressively less well posi-
tioned with increasing distance from the TSS [ 98 ,  100 – 102 ], suggesting that the 
NDR is the “organizing center.” An elegant study by Zhang et al. [ 103 ] showed that 
genome-wide formation of NDRs and their fl anking positioned nucleosomes could 
be recapitulated in in vitro-assembled chromatin by addition of a whole cell extract 
that supports ATP-dependent chromatin remodeling. This highly dynamic reposi-
tioning of nucleosomes is likely to control transcription by facilitating or impeding 
access of transcription factors to their corresponding regulatory DNA sequences in 
gene promoters [ 99 ,  104 ]. The importance of chromatin remodeling to the proper 
orchestration of gene regulation is evidenced by frequent mutation of genes for 
various chromatin remodelers in cancer [ 105 ].  

11.1.3     Histone Modifi cations 

 The core histones are subject to a myriad of posttranslational covalent modifi cations 
or marks, including acetylation, methylation, phosphorylation, ADP-ribosylation, 
ubiquitination, and sumoylation (reviewed in [ 106 – 110 ]). Many of these sites of 
modifi cation reside in the N-terminal tails of the core histones, whereas others map 
to the globular domain of the nucleosome core (reviewed in [ 110 ,  111 ]). These 
modifi cations are also reversibly targeted to their respective lysine, arginine, threo-
nine, and serine residues by an ever-increasing number of histone modifi ers [ 110 ]. 
In this vein, steady-state levels of histone acetylation are governed by the opposing 
activities of histone or lysine acetyltransferases (HATs or KATs) [ 112 ] and histone 
deacetylases (HDACs). In addition, accumulated levels of histone methylation are 
modulated by the coordinated activity of histone or lysine methyltransferases 
(HMTs or KMTs) and histone or lysine demethylases (KDMs) [ 113 ]. Histone- 
modifying enzymes vary in their levels of specifi city. For example, KATs and 
HDACs generally target multiple residues in core histones as well as other protein 
substrates. In contrast, KMT, KDM, and kinases apparently exhibit high residue 
specifi city [ 110 ,  114 ]. Therefore, histone marks constitute a dynamic and complex 
regulatory network that infl uences genome functions. 

 Posttranslational modifi cations of histones are key players in the global tran-
scription landscape of both euchromatin and heterochromatin [ 108 ,  110 ,  115 ,  116 ]. 
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High levels of histone acetylation correlate with transcriptional activation, while 
histone hypoacetylation is associated with transcriptional repression, both globally 
and at the level of specifi c genes. Consistent with this, histone acetylation is enriched 
at promoters and enhancers and is maintained at low levels in gene bodies to pre-
vent spurious transcription [ 108 ,  110 ,  117 ]. 

 Histone modifi cations, either singly or in combination, can drive specifi c signal-
ing outputs in chromatin (reviewed in [ 118 ]). Structurally, the hypoacetylated 
N-termini of the core histones mediate interactions between adjacent nucleosomes, 
facilitating higher-order compaction [ 119 – 125 ]. Acetylation of histone H4K16 
alone is suffi cient to inhibit compaction of 30 nm-like fi bers [ 126 ]. Posttranslational 
histone modifi cations also recruit biochemical activities to nucleosomes by serving 
as docking sites on nucleosomes for distinct protein domains contained within vari-
ous nuclear proteins [ 85 ,  110 ,  127 ]. These domains include the bromodomain that 
binds to acetyllysine residues in histone N-termini as well as the chromodomain and 
plant homeodomain (PHD) that interact with various states of methyl-lysine, i.e., 
un-, mono-, di-, and trimethylated (reviewed in [ 128 ,  129 ]). Many such domains are 
found within subunits of various chromatin remodeling complexes and in histone- 
modifying enzymes themselves, thereby creating positive feedback that reinforces 
specifi c chromatin states (reviewed in [ 107 ,  110 ,  114 ,  130 ]). For example, several 
KATs, e.g., GCN5 and P300, contain bromodomains that tether them to their acetyl-
lysine chromatin product, creating a positive feedback loop of acetylation    [ 131 –
 134 ]. Histone modifi cations can also effect nucleosome repositioning (also called 
 nucleosome sliding) and/or disassembly through interactions with ATP-dependent 
chromatin remodeling complexes (reviewed in [ 127 ]). For example, Hassan et al. 
[ 132 ,  135 ] showed that acetylated nucleosomes stabilize bromodomain-dependent 
recruitment of SWI/SNF. 

 Methylation of specifi c histone residues also elicits distinct outcomes with respect 
to transcription. Trimethylation of histone 3 lysine 4 (H3K4me3) preferentially local-
izes to the TSSs of recently transcribed promoters [ 136 – 139 ]. H3K4me3 has been 
shown to mediate gene activation through interaction with nucleosomes of the PHD 
motifs in subunits of chromatin-associated complexes, such as the general transcrip-
tion factor TFIID, chromatin remodeler NURF, and HBO1 KAT complex [ 140 – 145 ]. 
Alternatively, H3K4me3 can lead to active gene repression through PHD-mediated 
recruitment of HDAC-containing complexes [ 146 ,  147 ]. Histone 3 lysine 36 trimeth-
ylation (H3K36me3), although strongly associated with actively transcribed gene 
bodies (reviewed in [ 148 ]), recruits a complex with HDAC activity via two subunits, 
one of which contains a chromodomain and the other a PHD motif [ 114 ,  149 ,  150 ]. 
This HDAC recruitment is thought to suppress inappropriately initiated or cryptic 
transcription at sites besides TSSs by aiding refolding of the chromatin fi ber in the 
wake of advancing RNA polymerase II [ 116 ,  151 ]. On the other hand, trimethylation 
of histone H3 lysine 9 (H3K9me3) and histone H3 lysine 27 (H3K27me3) are 
strongly associated with transcriptional silencing. H3K9me3 and H3K27me3 are 
catalyzed, respectively, by a family of SET ( Drosophila  Su(var)3-9, Enhancer of 
zeste, and Trithorax)-domain-containing KMTs (e.g., G9a and Suvar39) and the 
SET-domain protein EZH2, which is a component of the PRC2 Polycomb complex. 
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 Regulation of histone posttranslational modifi cations is often redundant, as 
placement or removal of one mark can be catalyzed by more than one enzyme. In 
the same manner, different signaling pathways can be used to achieve the same 
transcriptional output. For example, H3K9me3 and H3K27me3 are both thought to 
infl uence chromatin accessibility and induce transcriptional silencing. Comparative 
genome-wide studies have shown that most genes are silenced by either H3K9me3 
or H3K27me3 [ 152 ,  153 ]. Genes silenced in the presence of either of these marks 
exhibit histone deacetylation (specifi cally at H3K9 and H3K14) and decreased 
H3K4me3. However, H3K27me3-mediated silencing can be achieved independent 
of DNA methylation, while the proposed model for H3K9me3-mediated silencing 
requires DNA methylation [ 154 – 156 ].  

11.1.4     Interplay of Epigenetic Mechanisms 

 The coordinated action of DNA methylation, histone modifi cations, and nucleo-
some positioning is crucial in governing gene expression in diverse cellular pro-
cesses. These interactions can produce linear signaling outputs or can employ 
redundant mechanisms that ultimately reinforce each other (reviewed in [ 157 – 161 ]). 
Despite intense study, our knowledge of the complex signaling networks between 
the various layers of epigenetic regulation remains limited. 

 Nevertheless, several lines of evidence support cross talk between various levels 
of epigenetic regulation. For example, TSG promoter silencing has been linked to 
co-localization of DNA hypermethylation and repressive histone marks. 
Heterochromatin protein 1 (HP1), which contains a chromodomain that binds to 
repressive H3K9me3, is present in a biochemical complex with the SUV39H1 
H3K9 KMT, creating positive reinforcement between heterochromatin posttransla-
tional marks and DNA methylation [ 162 ]. The association of DNA hypermethyl-
ation with nuclease-resistant chromatin, characteristic of regions with dense arrays 
of nucleosomes, connects DNA methylation and nucleosome occupancy [ 159 ,  163 ]. 
MBD-containing proteins are also found in complexes with HDAC and H3K9 KMT 
activities [ 70 ,  71 ,  73 ,  79 ,  162 ], which may increase nucleosome occupancy by 
inhibiting recruitment of chromatin remodelers that disassemble nucleosomes. 

 More recently, an interesting connection was described between H3K4me 
demethylation, the LSD1 (KDM1) histone demethylase, and DNMT1, whereby 
conditional deletion of the  Lsd1  gene in mouse ES cells led to progressive loss of 
global DNA methylation [ 164 ]. Interestingly, this effect was traced to methylation-
dependent destabilization of the DNMT1 enzyme. While loss of LSD1 in this sys-
tem did not change total levels of K3K4me3, in pluripotent human ES cells, 
K3K4me3 shows a strong inverse correlation with DNA methylation [ 165 ]. Another 
possible explanation for this inverse relationship is provided by the demonstra-
tion that the cysteine-rich ADD (ATRX-DNMT3A-DNMT3L) domain in the 
C-terminus of DNMT3L interacts preferentially with histone H3 that is unmethyl-
ated at Lys 4 [ 166 ]. Consistent with these results, the protein Cfp1 selectively binds 
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non- methylated CGs in a majority of CGIs and associates with the human Set1 
complex, an H3K4 KMT    [ 167 – 170 ]. 

 Elucidating the complex interplay between distinct epigenetic layers is a key 
challenge facing the fi eld. For example, it is generally accepted that CG methylation 
infl uences nucleosome positioning/occupancy. However, recent data also suggest 
the reverse: that nucleosome positioning can dictate accessibility of DNMTs to 
DNA and hence DNA methylation patterns, confounding attribution of causality 
[ 127 ,  171 ]. An important step in unraveling the interconnectivity of epigenetic regu-
lation is the development of integrative epigenetic methods that can directly corre-
late different epigenetic features, not only in a single experiment but on the same 
DNA molecule. Our lab has developed a technique that, combined with bisulfi te 
sequencing, allows for simultaneous single-molecule level detection of DNA meth-
ylation and chromatin accessibility. The DNA methyltransferase accessibility pro-
tocol for individual templates (MAPit) localizes protein–DNA interactions by 
probing with cytosine-modifying DNA methyltransferases that differ in specifi city 
from endogenous DNMTs. Sequencing individually cloned DNA products after 
amplifi cation of bisulfi te-converted sequences permits assignment of the methyla-
tion status of every enzyme target site along a single DNA strand. Use of the 
GC-methylating enzyme M.CviPI [ 172 ] allows simultaneous mapping of chromatin 
accessibility and endogenous CG methylation [ 173 ,  174 ]. In addition, three groups 
have recently integrated chromatin immunoprecipitation (ChIP) with bisulfi te 
genomic sequencing to directly link specifi c histone marks with DNA methylation 
on single molecules [ 175 – 177 ]. Such integrative methods should prove valuable in 
illuminating the mechanisms by which distinct epigenetic events work together to 
establish and maintain transcriptional programming in both normal and neoplasti-
cally transformed cells.  

11.1.5     Epigenetics in Tumorigenesis 

 Cancer cells are characterized by misregulated epigenetic environments compared to 
their nonmalignant counterparts. Alterations in each layer of epigenetic control have 
been described in essentially every cancer type. Cancer cells exhibit global DNA 
hypomethylation (around 20–60 % overall reduction in m 5 C) when compared to nor-
mal cells. The exact role of global DNA hypomethylation in cancer initiation and 
progression remains poorly understood [ 178 – 180 ]. It has been proposed that global 
loss of m 5 C in cancer cells compromises gene repression of loci that are normally 
transcriptional inactive or silenced, like repetitive sequences, retrotransposons, and 
centromeres [ 181 ]. Hence, the main contribution of hypomethylation to cancer etiol-
ogy is thought to be through the reactivation of retrotransposons, endoparasitic ele-
ments, and increased incidence of chromosomal rearrangements at repetitive 
sequences [ 182 – 185 ]. Thus, epigenetic changes in DNA methylation have deleteri-
ous consequences on the integrity of the cancer cell genome. Gene-specifi c hypo-
methylation also commonly contributes to cancer progression through the reactivation 
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of proto-oncogenes, e.g., N- myc  [ 186 ]. Loss of imprinting (LOI) of methylated alleles 
of  IGF2  in breast, colon, lung, and liver cancers has also been reported [ 187 – 189 ]. 
Reduced DNA methylation in gene bodies may also contribute to aberrant cryptic 
transcription and gene expression, but more research in this area is needed [ 31 ]. 

 A well-characterized epigenetic disruption in cancer cells is DNA methylation- 
dependent silencing of specifi c tumor suppressor genes (TSG) [ 15 ]. Gene-specifi c 
hypermethylation can occur at CGIs in promoters or shores, resulting in transcrip-
tional silencing of the associated gene. Of note, CGI shore DNA methylation can 
affect TSS selection and contribute to cancer [ 17 ,  21 ,  190 ]. TSG silencing has been 
shown to affect important cellular pathways, including DNA repair, cell cycle control, 
Ras signaling, apoptosis, metastasis, detoxifi cation, and responses to hormones and 
vitamins. Inactivation of these pathways enhances cancer cell proliferative capacity 
and genetic instability (reviewed in [ 160 ]). The correlation between promoter CGI 
hypermethylation and TSG silencing in cancer has been fi rmly established. As a 
result, silenced TSGs have proven useful as biomarkers for diagnostic and prognosis 
as well as to inform treatment of several cancer types (reviewed in [ 191 ]). Nevertheless, 
the mechanism(s) by which aberrant DNA methylation is established at these previ-
ously transcriptionally active chromatin regions and how it contributes to stable aber-
rant gene silencing remain ill defi ned (reviewed in [ 30 ,  161 ,  190 ]). 

 Histone modifi cation patterns are also severely altered in human tumors. 
Genome-wide studies of histone H4 modifi cations in normal and tumor-derived cell 
lines show that transformed cells exhibit global reduction of H4K16ac1 and 
H4K20me3. Global loss of H3K4me3 as well as H3 and H4 acetylation has also 
been reported in cancer cells. These losses can lead to disruption of heterochromatic 
regions associated with repetitive sequences and parasitic elements, thereby gener-
ating genomic instability and predisposing cells to cancer development [ 163 ,  192 , 
 193 ]. Histone modifi cations also contribute to gene-specifi c TSG silencing in can-
cer cells. Aberrant hypermethylation of TSG promoter sequences is accompanied 
by a reduction of active histone marks (e.g., histone acetylation and H3K4me3) and 
accumulation of repressive marks (e.g., H3K9me3 and/or H3K27me3). 

 Little data regarding nucleosome positioning in cancer are available. We and oth-
ers have shown that, in cancer, methylated TSG promoters undergo chromatin reor-
ganization that involves loss of nucleosome depletion at TSSs [ 93 ,  94 ]. Nucleosome 
positioning and chromatin organization are profoundly affected by deregulation of 
chromatin remodeling complexes, which mobilize nucleosomes in an ATP- 
dependent manner [ 194 – 196 ]. For example, mutations in genes coding for several 
subunits of the highly conserved SWI/SNF chromatin remodeler have been associ-
ated with oncogenesis [ 104 ]. For instance, mutant forms of BRG1, an ATPase sub-
unit of the SWI/SNF remodeler, have been reported in colon, breast, pancreatic, and 
lung cancers. Mice heterozygous for  SNF5 , encoding an essential core subunit of 
SWI/SNF, exhibit a high predisposition to aggressive and metastatic cancers [ 197 , 
 198 ]. Further studies are needed to determine if the oncogenic effect of SNF5 and 
BRG1 is dependent solely on the remodeling activity of SWI/SNF. Further investi-
gation is also needed to resolve current controversies concerning the temporal 
sequence of molecular events accompanying epigenetic gene silencing and to shed 
light on how epigenetic events contribute to different stages of cancer progression.   
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11.2     Breast Cancer Epigenetics 

11.2.1     DNA Methylation in Breast Cancer 

 Global DNA hypomethylation is a hallmark of cancer progression and is a frequent 
occurrence in breast tumors [ 199 ,  200 ]. This aberrant hypomethylation is mainly 
observed at repetitive DNA sequences and satellite DNA that are heavily methyl-
ated in normal cells. It is proposed that hypomethylation induces transcriptional 
reactivation of transposable repetitive elements, thus leading to insertional muta-
genesis and contributing to genomic instability. The cause(s) of global hypomethyl-
ation remains elusive. Loss of DNMT expression is rarely observed in breast cancer; 
rather increased expression, especially of DNMT3B, is frequent. It has been sug-
gested that aberrant expression of DNMT splice variants may contribute to the 
methylation changes (reviewed in [ 201 ]). An alternate possibility is that active DNA 
demethylation may be stimulated. The chromosome ten-eleven translocation 
(TET1-3) proteins have recently been implicated as DNA demethylases (reviewed 
in [ 202 ]). These proteins are proposed to oxidize m 5 C to an intermediate metabolite 
(either 5-hydroxymethyl-C, 5-formyl-C, or 5-carboxyl-C) which is then recognized 
and excised by DNA glycosylases and resolved through base excision repair [ 65 , 
 203 ,  204 ]. It has been reported that the tumor suppressor adenomatous polyposis 
coli (APC) regulates expression of proteins involved in active demethylation and 
that loss of APC function results in aberrant DNA hypomethylation [ 205 ]. This sug-
gests that active demethylation may play a role in breast tumorigenesis. Interestingly, 
a recent study by Thillainadesan et al. [ 206 ] found that stimulation of TGF-β signal-
ing caused rapid demethylation at the  p15   INK4B   tumor suppressor locus as well as 
global decreases in m 5 C levels in breast cancer cells. Note that TGF-β is initially 
tumor suppressive [ 207 ,  208 ] and often dysregulated and associated with malig-
nancy in breast cancer cells (reviewed in [ 209 ]).Thus, oncogene overexpression 
and/or tumor suppressor gene silencing may facilitate epigenetic reprogramming 
through the aberrant regulation of the DNA demethylase machinery. 

 Global hypomethylation is often accompanied by local promoter hypermethyl-
ation and silencing of tumor suppressor genes. Though not clearly understood, it 
appears that the process of aberrant de novo methylation is not random. Rather, 
certain genes are consistently hypermethylated and silenced among diverse cancer 
types, while some hypermethylation events are restricted to particular tumor types or 
to a particular subtype or stage during tumor progression. These differentially meth-
ylated regions could potentially be exploited for prognostic or diagnostic purposes. 

 Gene silencing by DNA hypermethylation is a common event in a variety of neo-
plasms. In colorectal cancer, a distinct subset of tumors was identifi ed as having a set 
of consistent, concordantly methylated genes. This phenotype, referred to as the 
“CGI methylator phenotype” (CIMP), has been observed in additional tumor types 
and often informs disease progression, treatment decisions, and patient survival out-
comes (reviewed in [ 210 ,  211 ]). Several studies examining global DNA methylation 
profi les in breast cancer cell lines and in tumor tissues have been conducted. 
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These studies (summarized below) have provided important insights into different 
mechanisms that may drive subtype-specifi c gene expression and tumor characteris-
tics. DNA methylation biomarkers identifi ed in breast cancer are listed in Table  11.1 .

   In Holm et al. [ 212 ], DNA methylation was profi led at 801 cancer-specifi c genes 
in 189 breast tumors and 4 normal breast samples. They observed that 25 % of 
molecular classifi ers based on gene expression in breast cancer were subject to 
subtype- specifi c DNA methylation. This indicates an important role for DNA meth-
ylation in regulating gene expression in specifi c subtypes of breast cancer. DNA 
methylation profi les also differ between tumors mutated in  BRCA1  and  BRCA2 , 
indicating that epigenetic features can vary in hereditary as well as sporadic disease. 
It should be noted that BRCA1 has recently been reported to directly increase 
DNMT1 activity which could in part explain the observed methylation differences 
[ 216 ]. Subtype-specifi c DNA methylation signatures discriminated between basal- 
like, luminal A, and luminal B tumors, whereas normal-like and  HER2 -amplifi ed 
tumors did not present a specifi c signature. Overall, the DNA methylation levels 
among the identifi ed biomarkers were highest in luminal B tumors, lower in luminal 
A tumors, and lowest in basal-like tumors. Interestingly, basal-like tumors expressed 
higher levels than luminal tumors of the histone methyltransferase EZH2 and its 
chromatin mark H3K27me3. PRC2-mediated gene silencing through H3K27me3 is 
commonly utilized by stem and progenitor cells to maintain pluripotency [ 217 , 
 218 ]. In addition, previous studies have suggested that basal-like tumors develop 
from transformed mammary progenitor cells, whereas luminal tumors develop from 
transformation of more differentiated luminal epithelial cells [ 219 ]. The DNA meth-
ylation results are consistent with this cell-of-origin distinction. 

 Subsequent global studies supported and expanded on the Holm et al. [ 212 ] 
results. In Fackler et al. [ 213 ], CGs at over 14,000 human genes (mostly in promot-
ers) were queried in 103 breast tumor and 21 normal samples. A DNA methylation 
signature was obtained that could stratify tumors based on estrogen receptor (ER) 

   Table 11.1    Hypermethylated gene biomarkers for breast cancer   

 Subtype specifi c [ 212 ] 
 Luminal A   MMP7 ,  PEG10 ,  RASSF1  
 Luminal B   GSTP1 ,  CHI3L2 ,  KIT ,  LYN ,  MMP7 ,  MYBL2 ,  RASSF1  
 HER2 +    GSTP1  
 Basal-like   ARGHDIB ,  CHCL9 ,  GRB7  

 Receptor associated [ 213 ] 
 ER +    EVI1 ,  ETS1 ,  IRF7 ,  LYN ,  PDXK ,  PTGS2 ,  RUNX3 ,  VIM ,  ACADL ,  ADAMTSL1 , 

 ARFGAP3 ,  B3GAT1 ,  CDCA7 ,  FAM78A ,  FAM89A ,  FLJ31951  ( RNF145 ), 
 FLJ34922  ( SLFN11 ),  GAS6 ,  HAAO ,  HEY2 ,  HOXB9 ,  ITGA11 ,  NETO ,  PROX1 , 
 PSAT1 ,  RECK ,  SMOC1 ,  SND1 ,  TNFSF9  

 ER –    DAB2IP ,  HSD17B4 ,  PER1 ,  ADHFE1 ,  DYNLRB2 ,  HSD17B8 ,  PISD ,  PDXK ,  WNK4  

 CIMP associated [ 214 ] 
 CIMP +    ALX4 ,  ARHGEF7 ,  SOX8 ,  FBN1 ,  FOXL2 ,  RASGRF2  

 Tumor suppressor genes (reviewed in Yang et al. 2001 [ 216 ]) 
  CDKN2A ,  HME1 ,  ESR1 ,  BRCA1 ,  RARB2 ,  CDH1 ,  PGR ,  TIMP3  
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status with increased DNA methylation observed in ER +  tumors. A “recurrence set” 
was also identifi ed, whereby the DNA methylation status at 100 loci could predict 
disease recurrence with greater sensitivity than gene expression profi ling. Notably, 
20 % of the 100 recurrence loci were from homeobox-containing genes, the prod-
ucts of which are likely involved in developmental regulation. 

 Though the above mentioned studies hinted at a potential CIMP in breast cancer, 
strong evidence for global CIMP in breast cancer was recently reported by Fang 
et al. [ 214 ]. By profi ling 39 tumors at over 14,000 genes (mostly promoters), they 
observed that 44 % of the tumors tested were, by their defi nition, CIMP + . These 
tumors were almost exclusively ER +  and PR +  (94 %) and associated with a lower 
propensity for metastasis and a better clinical outcome than CIMP −  tumors. The 
CIMP −  tumors comprised some ER +  and PR +  (45 %), but mostly basal-like (55 %), 
tumors. By testing the DNA methylation status at their three most informative loci 
in a validation set of 132 additional tumors, CIMP +  tumors demonstrated a signifi -
cantly lower risk for metastatic relapse and death independently of other known 
prognostic factors. Notably, many of the hypermethylated genes occurred at 
Polycomb group (PcG) targets, in agreement with the Holm et al. [ 212 ] fi ndings. It 
was recently determined that, in addition to PcG targets in adult stem/progenitor 
cells, loci identifi ed as hypermethylated in breast cancer are commonly occupied by 
bivalent chromatin marks in ES cells and are largely directed towards stable silenc-
ing of developmental regulators [ 220 ]. The breast cancer CIMP +  signature was 
compared to that of glioma and colon cancer, and while some overlap occurred, 
many genes informing CIMP +  tend to be tissue-type specifi c and associated with 
cancer-type- specifi c clinical outcomes. Whether breast cancer CIMP will emerge to 
be as important for prognosis or personalized treatment decisions as colon cancer 
CIMP remains to be determined. 

 It should be noted that the DNA methylation information reported in the above 
mentioned studies was obtained using approaches based on early versions of array 
hybridization. Although this strategy offers the advantage of profi ling DNA meth-
ylation at thousands of genes in hundreds of samples, a disadvantage is that the CpG 
probes tend to be biased towards gene promoters and that the methylation status of 
a particular gene is classifi ed based on the average methylation status at only 1 or 2 
CG sites. This precludes interrogation of DNA methylation in distal non-promoter 
regulatory sites, e.g., CG shores, which can often exert transcriptional control over 
adjacent genes [ 21 ]. Also, some studies have shown that disease-relevant perturba-
tions exist in regions that are not completely hypermethylated but rather exhibit 
partial methylation [ 221 ]. The suggestion is that these regions are more “plastic” 
and can be more readily modifi ed in response to environmental cues over the course 
of tumorigenesis than regions that are hypermethylated and tightly silenced. 

 Shotgun bisulfi te sequencing of HCC1954 breast cancer and normal human 
mammary epithelial cell (HMEC) DNA has provided a detailed view of global 
DNA methylation patterns and how they differ between normal and cancer cells 
[ 222 ]. This unbiased view of global DNA methylation found that the HER2 +  cell 
line was epigenetically distinct from normal cells. The cancer cells exhibited exten-
sive hypomethylation of coding and intergenic regions that correlated directly with 
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gene silencing and were enriched for H3K9me3 or H3K27me3. These blocks of 
repressive chromatin were also often peppered with promoter hypermethylation. 
Their data suggested that, in addition to gene silencing through local promoter 
hypermethylation, global hypomethylation in breast cancer cells may lead to tumor 
suppressor gene silencing through the formation and expansion of repressive chro-
matin domains. This mechanism of long blocks of repressive chromatin effecting 
selective gene silencing is also characteristic of ES cells [ 62 ]. Thus, more extensive 
characterization of breast cancer methylomes and chromatin features may further 
strengthen the sensitivity of epigenetic-based molecular subtyping and may expand 
this strategy to include subtypes that were indistinguishable when limiting the anal-
ysis to DNA methylation at gene promoters. 

 It is now clear that the DNA methylomes of breast cancer cells are markedly dif-
ferent than those of normal cells. A pervading question is, what drives or contributes 
to the re-patterning of DNA methylation during tumorigenesis? Though often evalu-
ated separately, increasing evidence indicates that global and local DNA methylation 
patterns are associated with specifi c active or repressive histone marks [ 223 ]. The 
concept of chromatin-directed DNA methylation is supported by several studies. For 
example, it has been shown that DNA in nucleosomes is protected from modifi cation 
by DNMT3A, which preferentially methylates linkers [ 224 – 226 ]. Also, certain 
structural domains on proteins bind to specifi c histone marks that can either exclude 
or direct DNMTs to the neighboring DNA [ 156 ,  227 ]. Studies supporting the oppos-
ing view of DNA methylation-directed chromatin remodeling are also prevalent. The 
presence of DNA methylation can prevent the binding of certain proteins to DNA. 
For example, it has been shown that DNA methylation prevents binding of the PRC2 
complex to chromatin [ 228 – 230 ]. Further, it has been observed that inhibition of 
DNA methylation by 5-azacytidine in human embryonic kidney cells results in 
global increases of H3K9me3 and H3K27me3 [ 231 ]. These data also support the 
observation that DNA methylation and H3K27me3 are mutually exclusive repres-
sive marks [ 222 ], though this mutual exclusivity was recently challenged based on 
data acquired using a newer, more integrative chromatin technology that queries 
histones marks and DNA methylation on the same DNA strands [ 176 ,  177 ]. Though 
the initiating mechanism(s) remains elusive, aberrant DNA methylation and chroma-
tin structure are both important variables in understanding breast cancer biology.  

11.2.2      Chromatin Modifi ers in Breast Cancer 

 Chromatin-modifying enzymes exert control over multiple target regions in the 
genome; thus, the altered expression of thousands of tumor-promoting genes could 
be attributed to aberrant expression of a single chromatin regulator. SATB1 is a 
nuclear protein that functions as a “genome organizer.” Essential for proper T-cell 
development, SATB1 mediates a functional nuclear architecture that has a “cage- 
like” protein structure surrounding heterochromatin [ 232 ]. SATB1 regulates gene 
expression by recruiting and tethering chromatin remodeling and modifying 
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enzymes and transcription factors to DNA. On T-helper cell activation, SATB1 
becomes expressed and folds the 200 kb locus encoding T-helper 2 cytokine on 
mouse chromosome 11I into dense loops for rapid induction of multiple cytokine 
genes [ 233 ]. In breast cancer, SATB1 becomes expressed during malignancy and 
markedly induces gene expression to promote an aggressive phenotype that sup-
ports both tumor growth and metastasis. Positive nuclear staining for SATB1 also 
served as an independent marker of poor prognosis [ 234 ]. While the mechanism of 
SATB1 overexpression in aggressive breast cancer is unclear, a recent study found 
that SATB1 transcript and protein expression could be repressed by FOXP3 and its 
downstream miRNA targets [ 235 ]. FOXP3 is a member of the forkhead/winged 
helix family of transcription factors, fi rst identifi ed in T-regulatory cells as essential 
for cellular identity and function [ 236 ]. FOXP3 is an X-linked gene and has been 
described as having tumor-suppressive functions [ 237 ]. Furthermore, loss of 
FOXP3 function has been reported in primary breast cancers, and it has been sug-
gested that loss of FOXP3 function may support SATB1 overexpression. As the 
X-inactive allele of FOXP3 is likely functional (i.e., genetically wild type), epigen-
etic rescue of FOXP3 expression may be a viable strategy for repressing SATB1 
expression in malignant breast cancer. 

 Defects in histone modifi ers including KAT and HDAC enzymes and aberrant 
expression of variant histones have been observed in various stages of breast cancer 
progression [ 238 ,  239 ]. As histone-modifying enzymes are considered highly 
“druggable” targets, this constitutes an exciting area for pharmacologic develop-
ment (discussed in Sect.  11.3 ). Differences in the expression of chromatin- modifying 
enzymes have been observed in breast cancer. Genes encoding EZH2 and other PcG 
proteins responsible for H3K27me3 are frequently overexpressed in breast cancers 
[ 240 ,  241 ], and point mutations that lead to loss or gain of function have also been 
reported in these genes [ 242 – 244 ]. As described in the previous section, gene silenc-
ing in HER2 +  breast cancer cells seems to be characterized by long blocks of repres-
sive histone marks that could be a consequence of aberrant PcG protein expression. 
Additional histone modifi ers that have been reported to be aberrantly expressed in 
breast cancer are listed in Table  11.2 .

11.2.3        Chromatin Landscapes in Breast Cancer 

 In addition to aberrant expression of chromatin-modifying or-organizing proteins, 
large-scale redistribution of transcription factor binding also contributes to global 
changes in chromatin structure in cancer cells. Differences in breast cancer- associated 
ER chromatin occupancy have recently been reported. Ross-Innes et al. [ 264 ] 
mapped ERα occupancy using ChIP followed by deep sequencing (ChIP-seq) of 
primary breast tumors and metastases. Differential binding analysis revealed two 
sets of ERα-bound genomic regions: the set from the good prognosis tumor group 
mostly contained estrogen-responsive elements    (EREs), whereas the set associated 
with the poor prognosis tumor group contained EREs and FOXA1 binding motifs 
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[ 264 ]. FOXA1 is a pioneer factor that has been shown to direct ER chromatin binding 
[ 265 ]. Together with additional experiments in breast cancer cell lines, the data from 
both papers indicates that FOXA1 reprograms ER target gene selection in treatment-
resistant cancer cells from EREs to FOXA1-bound loci. Though they did not assess 
the effects of global ER redistribution on overall chromatin structure or DNA meth-
ylation, one can envision a scenario whereby loss of ER binding to EREs, recruitment 
of ER to FOXA1-bound chromatin, or both could facilitate nucleosome repositioning 
to accommodate loss or gain of factor binding. This scenario has been observed in 
ChIP-seq experiments conducted on androgen-stimulated prostate cancer cells, 
whereby androgen treatment resulted in nucleosome repositioning and depletion 
from androgen receptor binding sites [ 266 ,  267 ]. The repositioning of nucleosomes 
could then support further epigenetic reprogramming by redirecting DNA methyla-
tion accordingly. Recall that the breast cancer CIMP +  phenotype was restricted to ER +  
tumors, further supporting a link between ER and DNA methylation. The redirection 
of ER binding from EREs to FOXA1-bound chromatin may also lead to increased 
DNA methylation at EREs. This is possible because transcription factor binding has 
recently been shown to create low-methylated regions (LMR) in mouse ES cells and 
loss of factor binding potentiated accumulation of DNA methylation [ 268 ]. 

 The modifi cations applied to histone tails by histone-modifying enzymes must 
be “read” and “interpreted” by additional chromatin-interacting proteins. The 
E3-ubiquitin ligase, tripartite motif-containing 24 (TRIM24), is a chromatin regula-
tor that has been reported to function as a reader of dual histone marks through 

   Table 11.2    Histone modifi ers aberrantly expressed in breast tumors   

 Enzyme  Type  Substrate  Alteration  Reference 

 EZH2  KMT  H3K27  Mutation, amplifi cation  [ 240 ,  245 – 247 ] 
 PRDM14  KMT  Unknown  Amplifi ed  [ 248 – 250 ] 
 SMYD3  KMT  H3K4  Increased expression  [ 251 ] 
 WHSC1L1  KMT  H3K36  Amplifi ed  [ 252 ,  253 ] 
 PRDM5  KMT  Unknown  Reduced expression  [ 254 ] 
 CARM1  RMT  H3R17  Increased expression  [ 255 ,  256 ] 
 KDM1 (LSD1)  KDM  H3K4me, H3K9me  Increased expression  [ 257 ] 
 KDM4A (JMJD2A)  KDM  H3K9me2/3, H3K36me2/3  Increased expression  [ 239 ] 
 KDM6A (UTX)  KDM  H3K27me2/3  Increased expression  [ 239 ] 
 KDM5B (PLU-1)  KDM  H3K4  Increased expression  [ 258 ] 
 HBO1  HAT  H4K5, H4K12  Increased expression  [ 259 ] 
 MOF  HAT  H4K16  Decreased expression  [ 260 ] 
 HDAC1  HDAC  Multiple  Increased expression  [ 239 ] 
 HDAC2  HDAC  Multiple  Decreased expression  [ 261 ] 
 HDAC5  HDAC  Multiple  Increased expression  [ 239 ] 
 HDAC3  HDAC  Multiple  Increased expression  [ 262 ] 
 HDAC6  HDAC  Multiple  Decreased expression  [ 263 ] 
 CHD5  CHD  Multiple  Decreased expression  [ 263 ] 

   Abbreviations :  KMT  lysine methyltransferase,  RMT  arginine methyltransferase,  KDM  lysine demethyl-
ase,  HAT  histone acetyltransferase,  HDAC  histone deacetylase,  CHD  chromodomain/helicase/DNA-
binding protein  
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tandem PHD and bromodomain motifs [ 269 ]. Structural and biochemical analyses 
suggest that the PHD-bromodomain region of TRIM24 serves as a functional unit 
for combined recognition of unmodifi ed H3K4 and acetylated H3K23 within the 
same histone tail. TRIM24 chromatin binding overlaps with ER binding, especially 
upon estrogen stimulation, and augments activation of estrogen-dependent genes 
associated with cellular proliferation and tumor development. Global analysis of 
chromatin interactions showed estrogen-stimulated binding of TRIM24 and ERα at 
sites that exhibit loss of H3K4me2 and gain of histone acetylation. Interestingly, 
while estrogen-stimulated recruitment of TRIM24 to chromatin overlaps with a sim-
ilar number of ER binding regions as FOXA1, very few regions are bound by both 
TRIM24 and FOXA1. This could be because TRIM24 preferentially binds to EREs 
depleted of H3K4me2, but enriched for H3 acetylation [ 269 ], whereas FOXA1 bind-
ing occurs primarily at distal enhancers enriched in H3K4me2 [ 270 ]. However, it 
should be noted that ERα recruits KATs [ 271 ] and LSD1 (demethylates H3K4me2/1) 
to chromatin [ 272 ]. Therefore, without high-resolution time course experiments, it is 
diffi cult to determine whether the chromatin differences existed before or after dif-
ferential binding by each transcription factor. Regardless, it is clear that estrogen 
stimulation regulates different classes of target genes depending on specifi c chroma-
tin features, such as H3K4 methylation status. Importantly, aberrant overexpression 
of TRIM24 was frequently observed in breast cancer and directly correlated with 
poor survival in patients with either ER +  or ER –  tumors [ 269 ]. These results support 
further evaluation of TRIM24 as a therapeutic target for breast cancer.   

11.3      Targeting Epigenetics in Cancer Treatment 

11.3.1     Demethylation Agents 

 The fi rst epigenetic modulator in clinical use was the demethylating agent, 
5- azacytidine (5-aza). In a Phase 1 clinical trial reported in 1972, 30 patients with 
advanced solid tumors were treated with 5-azacytidine [ 273 ]. Responses were seen 
in 7 of 11 patients with breast cancer, 2 of 5 patients with melanoma, and 2 of 6 
patients with colon cancer. However, signifi cant toxicities dampened interest in the 
drug. In 1993, the results of a single-arm Phase 1/2 trial in patients with myelodys-
plastic syndrome (MDS) treated with 5-aza indicated that longer assessments were 
necessary to see a signifi cant effect on outcome [ 274 ]. Following a Phase 3 trial, 
5-aza was approved for use in patients with MDS in 2004. 

 To date, the most common DNA demethylating agents in clinical use as antican-
cer drugs are 5-aza and 5-aza-2′-deoxycytidine (decitabine). Though originally 
developed as a nucleoside antimetabolite, it was later determined that 5-aza treat-
ment results in loss of DNA methylation. The proposed mechanism is that 5-aza 
incorporates into RNA and DNA and forms a covalent bond with DNMTs, thus 
“trapping” them to DNA and effecting DNMT depletion. Decitabine is a 
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structurally similar compound that selectively incorporates into DNA and was 
therefore expected to be a less toxic and more specifi c alternative to 5-aza [ 275 –
 278 ]. Decitabine has been extensively tested in the clinic and approved by the U.S. 
Food and Drug Administration (FDA) for treatment of acute myelogenous leukemia 
(AML). However, both 5-aza and decitabine are toxic and highly unstable in aque-
ous solutions (reviewed in [ 279 ]). This makes both drugs diffi cult to use in clinical 
settings, especially in treating solid tumors. Thus, development of DNMT inhibitors 
with more favorable properties remains of high interest. 

 A new DNMT inhibitor with promising translational potential is zebularine 
(reviewed in [ 280 ]). Zebularine is also a cytidine analog, but it is more stable and 
less toxic than 5-aza and decitabine. Zebularine was originally developed as a cyti-
dine deaminase inhibitor but was later shown to potently inhibit DNMT activity 
[ 281 ] and cancer cell growth [ 282 – 284 ]. The mechanism of action is largely the 
same as 5-aza and decitabine; however, lower toxicity and longer biological half- 
life make it an attractive candidate for preclinical testing. It has been shown that 
zebularine can be administered orally due to its longer half-life than other DNMT 
inhibitors and can inhibit tumor growth and induce expression of tumor suppressor 
genes [ 133 ,  134 ,  285 ]. Subsequent xenograft studies showed that short-term treat-
ment with zebularine [ 286 ] or even a single injection [ 287 ] can inhibit tumor 
growth. Studies in genetically engineered mice have also been conducted to evalu-
ate long- term therapy with an oral formulation of zebularine for intestinal adenomas 
[ 288 ] and mammary tumors [ 289 ]. In our study, high-dose zebularine treatment 
delayed breast tumor growth and reduced tumor burden in an MMTV-PyMT mouse 
model. In the Yoo et al. [ 288 ] study, continuous treatment of Min transgenic mice 
with low-dose zebularine prevented intestinal polyp formation in the majority of 
treated animals, whereas controls all developed polyps. These studies suggest that 
zebularine is an attractive target for future clinical trials.  

11.3.2     Histone Deacetylase Inhibitors 

 Histone deacetylase (HDAC) inhibitors were discovered in the 1970s, when it was 
shown that treatment of cells with the short-chain fatty acid sodium butyrate (NaB) 
led to hyperacetylation of histones [ 290 ]. In the following two decades, several 
more promising antitumor agents that inhibit HDACs were discovered. These 
include the hydroxamic acid-derived compounds such as Trichostatin A (TSA), 
suberoylanilide hydroxamic acid (SAHA, trade name Vorinostat), and Scriptaid; 
aliphatic acids such as valproic acid (VPA); the benzamide derivative MS-275 
(Entinostat); and cyclic tetrapeptides such as depsipeptide (FK228 or FR901228, 
trade name Romidepsin). Each of these inhibits HDACs by binding to various posi-
tions on the zinc-containing catalytic domain (reviewed in [ 291 ,  292 ]). It should be 
noted that inhibition of deacetylation of nonhistone proteins as well as histones is 
observed. Many cancer-relevant transcription factors exhibit increased acetylation 
in the presence of HDAC inhibitors, including p53, RB, E2F1, and ACTR, among 
others (reviewed in [ 293 ]). 
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 The three HDAC inhibitors in most widespread clinical use today are VPA, 
SAHA, and depsipeptide. VPA has the longest clinical history as it has been used 
for treatment of epilepsy since the 1960s. It inhibits proliferation of cultured cancer 
cells at millimolar concentrations, shows synergistic effects in combination with 
decitabine or hydralazine, and is currently in clinical trials for treatment of multiple 
types of cancer. SAHA also induces growth inhibition, differentiation, or apoptosis 
in cultured cancer cells [ 294 ,  295 ] and inhibits cancer cell growth synergistically 
with decitabine or zebularine at micromolar concentrations; however, it has a short 
biological half-life [ 296 ]. Depsipeptide, discovered in 1994 [ 297 ], preferentially 
targets class I HDACs [ 298 ]. It shows synergistic effects in combination with 
decitabine, zebularine, Trichostatin A, and 5-aza and inhibits cancer cell prolifera-
tion at sub-micromolar concentrations. Currently, SAHA and depsipeptide have 
been approved by the FDA for treatment of cutaneous T-cell lymphoma, while VPA 
clinical trials are ongoing.  

11.3.3     Combination Therapies with DNMT and HDAC 
Inhibitors 

 Thus far, DNMT and HDAC inhibitor monotherapy has shown a less impressive 
clinical track record in solid tumors compared to hematological malignancies. One 
problem is decreased drug effi cacy in solid tumors. This could be due to the pres-
ence of tumor cells that replicate slowly or not at all. Decreased effi cacy could also 
be attributed to limited drug exposure given the instability of the compound. There 
are several compelling clinical reasons to use epigenetic modalities in combination. 
Given the synergistic biological activities of DNMTs and HDACs, combining a 
DNA demethylating agent and an HDAC inhibitor might be expected to improve 
effi cacy. In addition, the potential synergistic combination could decrease toxicity 
by allowing administration of lower doses of either drug. In general, treatment with 
demethylating agents or HDAC inhibitors alone can cause signifi cant toxicity. 
Recently, however, the combination of decitabine and depsipeptide was demon-
strated to synergistically inhibit growth of lung and breast cancer cells, remarkably, 
at 1,000-fold lower doses of depsipeptide than current clinical usage [ 133 ,  134 ]. 
Several ongoing Phase 1 and 2 clinical trials are using DNA methylation or HDAC 
inhibitors in combination in breast cancer patients (reviewed in [ 299 ]). Epigenetic 
agents can also resensitize refractory tumors to traditional therapies. Preclinical 
experiments using cancer cell lines and murine models may help inform optimal 
therapeutic combinations that would yield better clinical outcomes. 

 Inhibitors of DNMTs and HDACs in combination show synergistic growth inhi-
bition in cancer cell lines and in animal models of cancer. These inhibitors synergis-
tically affect chromatin state and lead to more pronounced re-expression of 
epigenetically silenced genes for tumor suppressors and cell cycle regulators [ 154 ]. 
They can also synergize with radiotherapy [ 300 ,  301 ], CDK inhibitors [ 302 ], TRAIL 
cytokine [ 303 ], and conventional chemotherapy agents, such as cisplatin [ 304 ], 
paclitaxel, doxorubicin, and 5-fl uorouracil [ 305 ]. Furthermore, they can induce a 
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response in tumors that are resistant to conventional chemotherapeutic agents [ 306 ]. 
The effects of epigenetic drugs on tumor growth in xenograft and in genetically 
engineered mouse models are similar to those observed in cancer cell lines. 
Treatment of mice with DNMT1 and HDAC inhibitors causes induction of genes 
coding for tumor suppressors and pro-apoptotic proteins, leading to inhibition of 
tumor growth and apoptosis. The effects of epigenetic agents were similar using 
several distinct drugs and tumor models—e.g., p21 protein expression was induced 
with fi ve different drugs (SAHA, MS-275, PXD101, LBH-589, and decitabine) in 
xenograft models of breast, lung, and ovarian cancer. CDKN1A/p21 expression was 
also induced by zebularine in a transgenic mouse model of breast cancer [ 289 ].  

11.3.4     Histone Methyltransferase Inhibitors 

 Though much of the focus for epigenetic drug development has been on DNMT and 
HDAC inhibitors, histone methyltransferases (HMTs) have recently emerged as 
viable drug targets for cancer. Mutations in or aberrant expression of HMTs has 
been documented in a variety of human tumors, including breast cancer. Importantly, 
though known HMTs comprise a 96-member family of enzymes, they exhibit a high 
degree of structural and biochemical diversity, allowing for biological specifi city 
and pharmacologic selectivity. As such, they are considered highly favorable “drug-
gable” targets, and many companies have developed small-molecule HMT inhibi-
tors that are in various phases of preclinical development. Most of the small 
molecules bind within the binding pocket for the  S -adenosyl- l -methionine methyl 
donor of the targeted HMT and thus competitively inhibit HMT function. 

 Mixed-lineage leukemia (MLL) patients are likely to be the initial participants in 
HMT inhibitor trials. A hallmark of MLL disease is a large number of chromosomal 
translocations involving the  MLL  gene that create chimeric proteins [ 307 ]. The  MLL  
gene encodes for an HMT that contains a SET domain and catalyzes H3K4me at 
specifi c gene loci [ 308 ,  309 ]. In the MLL translocations, the SET domain is lost and 
the remaining MLL protein is fused to a variety of partners that interact directly or 
indirectly with the HMT DOT1L [ 310 – 315 ]. DOT1L catalyzes methylation of 
H3K79 and leads to enhanced expression of leukemogenic genes [ 316 – 318 ]. 
   DOT1L-specifi c inhibitors have been developed and preclinical evaluation of one 
compound, EPZ004777, shows that it is highly specifi c to DOT1L, causes depletion 
of H3K79 methylation (but not other histone methylation marks), selectively inhib-
its proliferation and induces apoptosis in cells with MLL translocations, and 
increases survival in a murine MLL model [ 319 ]. If successfully translated, the use 
of DOT1L inhibitors in MLL patients will serve as a proof of principle for epigen-
etic therapy of cancer with a genetic defect. 

 Lead optimization for pharmacological inhibition of several disease-associated 
HMTs is underway. In addition to DOT1L, EZH2 inhibitors are in preclinical devel-
opment. EZH2 is a SET-domain-containing HMT in the PRC2 complex that cata-
lyzes the repressive mark H3K27me3. EZH2 is aberrantly expressed in several 
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tumors; it is commonly mutated in non-Hodgkin’s lymphoma and amplifi ed in 
breast, prostate, colon, gastric, bladder, liver, and skin cancers (reviewed in [ 320 ]). 
As described in Sect.  11.2.2 , widespread H3K27me3 repressive chromatin domains 
associated with decreased gene expression are observed in aggressive breast can-
cers. Selective EZH2 knockdown using RNA interference (RNAi) leads to decreased 
breast cancer cell proliferation in vitro and decreased tumor growth in MDA-MB-231 
xenografts in vivo [ 321 ]. These studies indicate that EZH2 inhibition may be an 
attractive treatment strategy for EZH2-overexpressing breast cancers. However, 
current selective EZH2 inhibitors are directed towards specifi c mutant forms of 
EZH2 [ 243 ,  322 ]. At least in non-Hodgkin’s lymphoma, cells expressing such 
EZH2 mutants are more sensitive to these compounds than cells harboring wild- 
type EZH2. Therefore, translating EZH2 inhibition to targeted breast cancer therapy 
will require preclinical testing of existing compounds in breast cancer models and/
or lead optimization of additional compounds.  

11.3.5     Next-Generation Compounds 

 The clinical effi cacy of DNMT or HDAC inhibitors as single agents has been disap-
pointing, especially towards solid tumors. This could be due to the apparent inter-
play between DNMTs and histone modifi ers in regulating gene expression, which 
suggests these agents would be more effective when combined. Alternatively, effi -
cacy could be increased if delivery of these agents is improved. Decitabine and 
5-aza are both highly unstable, which may limit effective treatment in the clinic. 
HDAC inhibitors are more stable than DNMT inhibitors, and although they exhibit 
cancer cell-selective anti-proliferative effects, their maximum therapeutic window 
is adversely affected by their systemic delivery to all cells rather than just tumor 
cells. Re-tailoring existing compounds to increase bioavailability or tumor cell 
selectivity may also increase their clinical effi cacy. 

 The compound SGI-110 (formerly S-110) is a dinucleotide of decitabine fol-
lowed by 2′-deoxyguanosine. This formulation allows for increased patient expo-
sure to drug by inhibiting in vivo deamination of decitabine by cytidine deaminase 
[ 323 ]. SGI-110 has shown demethylation and antitumor activities in xenograft mod-
els and in primates [ 324 – 326 ]. The compound is also currently being evaluated in a 
randomized Phase 1-2 fi rst-in-human clinical trial for treatment of relapsed/refrac-
tory MDS and AML. Interim results from this trial were recently released and indi-
cated that SGI-110 was more effective than decitabine when delivered intravenously. 
Major responses were seen for 3 of 7 refractory AML patients, accompanied by 
hypomethylation of DNA. Importantly, the optimal biologically effective dose was 
reached before the maximum-tolerated dose, allowing for expansion of the study to 
enroll previously untreated MDS patients and elderly AML patients [ 327 ]. 

 Though HDAC inhibitors are being used with some success in clinical trials, a 
recent study by Pazolli et al. [ 328 ] suggests that effects of HDAC inhibitors on cells 
in the tumor microenvironment may limit their effi cacy. More specifi cally, normal 
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fi broblasts treated with HDAC inhibitors potently increase expression of senescence- 
associated secretory factors, including interleukins 6 and 8 (IL-6 and IL-8) as well 
as osteopontin (OSN). These factors are implicated in promoting tumor growth and 
pretreatment of fi broblasts with NaB or SAHA enhanced growth of keratinocytes 
compared to vehicle-treated fi broblasts that were co-injected into immunocompro-
mised mice. In addition, primary breast fi broblasts also exhibited increased expres-
sion of IL-6, IL-8, and OSN upon treatment with either NaB or SAHA. Though 
preliminary, these data suggest that it will be important to assess molecular changes 
in the breast stroma following HDAC inhibitor therapy and possibly other treatment 
modalities. If tumor-promoting cytokine expression is elevated in patients following 
treatment with these agents, then future HDAC inhibitor development could benefi t 
from identifying compounds that inhibit tumor growth without stimulating produc-
tion of detrimental paracrine factors from cells in the microenvironment. 

 Chemical-based strategies have also been employed to improve the effi cacy of 
HDAC inhibitors. The compound CHR-2845 is a fusion of a novel HDAC inhibitor 
with a cleavable esterase-sensitive motif (ESM) moiety. Presumably, the HDAC 
inhibitor will remain inactive until delivered to a cell that expresses an appropriate 
esterase, which recognizes and hydrolyzes the compound to release an acid that 
inhibits HDACs. For this compound, the cells expressing the relevant esterase are 
macrophages, and thus, this strategy exploits the biological accumulation of macro-
phages in tumors. Preclinical benefi ts observed for ESM-based HDAC inhibitors 
include improved tolerability, increased potency, and increased duration of action. 
CHR-2845 is currently in Phase 1 trials for hematological disease and lymphoid 
malignancy. A related compound, CHR-4487, is a SAHA-ESM fusion currently in 
preclinical development and has shown improved outcomes compared to SAHA 
treatment in murine arthritis models [ 329 ]. 

 Though these strategies using next-generation compounds are promising, future 
testing is required to determine if maximizing bioavailability and cell-type-restricted 
drug delivery will increase the clinical effi cacy of current DNMT and HDAC 
inhibitors.  

11.3.6     Targeted Epigenetic Therapy in Breast Cancer 

 In addition to amplifi cation of EZH2, other features of aggressive breast cancer can 
be exploited to maximize the benefi ts of using epigenetic agents in combination or 
in addition to traditional therapies. For example, ER expression is lost in a subset of 
breast tumors rendering these tumors refractory to endocrine therapy. In many 
cases, loss of ER expression has been attributed to epigenetic mechanisms in breast 
cancer cell lines. Treatment with demethylating agents, HDAC inhibitors, or both 
leads to re-expression of ER and, furthermore, sensitizes such cells to endocrine 
therapies, e.g., tamoxifen [ 330 – 333 ]. Not surprisingly, clinical trials combining epi-
genetic and endocrine therapy have been conducted. In a recent Phase 2 trial, the 
combination of the HDAC inhibitor Vorinostat (SAHA) and tamoxifen was tested 
in patients with hormone therapy-resistant breast cancer [ 334 ]. The clinical benefi t 
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rate (response or stable disease >24 weeks) was 40 %. Histone hyperacetylation and 
higher baseline HDAC2 levels correlated with response. This study suggests that the 
combination of Vorinostat and tamoxifen is well tolerated and exhibits encouraging 
activity in reversing hormone resistance. However, it should be noted that a random-
ized trial is required to determine the effects of the combination over the potential 
effi cacy of tamoxifen alone. Also, it was determined that the absence of bulk histone 
acetylation could be used as an early negative predictor for patients who are not 
likely to benefi t. This biomarker could be used to identify patients likely to benefi t 
in future clinical trials. 

 Epigenetic agents are more effective when key tumor suppressor genes, such as 
 CDKN2A  ( P16 ) and  P18 , are epigenetically silenced [ 335 ], suggesting that their dere-
pression may be critical for therapeutic effect. For example, effi cacy of the DNMT 
inhibitors decitabine or zebularine combined with the HDAC inhibitor depsipeptide in 
lung and breast tumor cells with defi ned  CDKN2A  status was described recently [ 133 , 
 134 ]. This study showed that non-small cell lung cancer cells with methylated 
 CDKN2A  were signifi cantly more sensitive to methylation inhibitors than cell lines 
with deleted  CDKN2A  [ 133 ,  134 ]. In addition, the combination of zebularine and dep-
sipeptide resulted in a synergistic effect on cell growth inhibition that was also linked 
with the presence of epigenetically silenced  CDKN2A . These data strongly support 
the importance of prospective preselection of patients in future clinical trials and 
 suggest  CDKN2A  status as a key biomarker for DNMT/HDAC inhibition studies.   

11.4     Breast Tumor Heterogeneity and Therapy 

11.4.1     Intratumoral Heterogeneity 

 One major barrier to successful therapeutic intervention of any type of cancer is 
tumor heterogeneity. In addition to the histological, molecular, and epidemiological 
interindividual heterogeneity that impacts treatment decisions, intratumoral hetero-
geneity has emerged as a crucial factor affecting long-term treatment effi cacy. 
Increasing evidence suggests that many human cancers, including breast cancer, are 
initiated and promoted by a small subpopulation of cells within the bulk tumor. 
These cells often display characteristics associated with adult tissue stem cells, 
including similar cell surface antigen expression, drug effl ux capacity, and slow 
replication rates [ 336 ]. Accordingly, these cells are often classifi ed as tumor- 
initiating, tumor-promoting, or cancer stem cells (CSCs), which are presumed to 
undergo metastasis and underlie treatment resistance and disease recurrence. It 
should be noted that the classifi cation of CSC does not imply that these cells origi-
nate from normal adult tissue stem cells that have become neoplastically trans-
formed. Rather, CSC denotes specifi c functional characteristics, including the 
ability to initiate tumors, capacity for self-renewal, and capacity to generate non- 
tumorigenic progeny. Several studies have provided evidence that CSCs are more 
tolerant to both chemotherapy and radiotherapy [ 337 – 341 ]. This tolerance of CSCs 
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in solid tumors has been implicated as a possible mechanism for the high degree of 
persistent disease observed following current treatment modalities. 

 Though it is highly likely that CSCs are epigenetically distinct from bulk tumor 
cells, differences between the epigenomes of CSCs and their non-tumorigenic 
counterparts have not been evaluated. Interestingly, a study by Sharma et al. [ 342 ] 
examining multiple human cancer cell lines consistently identifi ed a subpopulation 
(0.3–5 %) of drug-tolerant cells that were enriched for CSC markers. Characterization 
of these cells indicated that the drug-tolerance phenotype was reversible and depen-
dent on an altered chromatin state that could be pharmacologically reversed using 
HDAC inhibitors. Epigenetic characterization of breast CSCs offers an attractive 
opportunity towards identifying additional avenues for CSC targeting. For example, 
in Chang et al. [ 241 ], it was reported that breast CSCs isolated from primary tumors 
were enriched for EZH2 expression. Increased EZH2 expression correlated with 
decreased expression of the DNA repair protein RAD51. Ectopic expression of 
EZH2 increased the CSC subpopulation and culminated in amplifi cation of RAF1 
expression and increased MEK/ERK signaling. Importantly, treatment with a MEK/
ERK inhibitor signifi cantly suppressed the number of cells in the CSC subpopula-
tion. Thus, targeting of the breast CSC population is feasible, and further character-
ization of these cells may unveil novel therapeutic strategies.  

11.4.2     Considerations for Molecular Profi ling of Tumor 
Heterogeneity 

 Several technical challenges to characterizing the global gene expression and epig-
enome of relevant CSCs exist. For one, because CSCs comprise such a small frac-
tion of cells in a tumor, traditional population-averaged techniques, such as 
microarrays or hybridization-based epigenetic assays, lack the sensitivity to detect 
CSC contributions to bulk tumor gene expression or epigenomic features. Sorting 
cells based on CSC characteristics prior to such analyses is helpful, but technically 
diffi cult and not comprehensive. Many different molecular breast CSC markers 
have been reported; however, most have been challenged. Furthermore, antigen sig-
natures identifi ed in cells taken from a single tumor, but isolated based on different 
CSC markers, do not overlap [ 343 ]. One can use functional characteristics, such as 
separating slow- from fast-dividing cells or resistance to a particular drug, but this 
requires cell culturing rather than direct interrogation of primary tumor specimens. 
It would also be unclear what characteristics were intrinsic to the cells and which 
were acquired due to drug treatment or cell culture conditions. With the increased 
accessibility and affordability of massively parallel sequencing technologies, future 
studies providing single-molecule-based information may allow for interrogation of 
epigenetic features with suffi cient coverage to allow for detection of unique epigen-
etic subpopulations. 

 While DNA methylation is the most often queried epigenetic feature, the results 
from Sharma et al. [ 342 ] highlight the potential for the importance of differential 
chromatin structure features as well. As previously mentioned, our lab has 
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developed a technique that, combined with bisulfi te sequencing, allows for simulta-
neous single-molecule level detection of DNA methylation and chromatin accessi-
bility (MAPit) [ 173 ,  174 ]. MAPit is currently, to our knowledge, the only footprinting 
method that can detect subpopulations of molecules with distinct patterns of protein 
binding or chromatin architecture and correlate them directly with the occurrence of 
endogenous methylation. Using this technology in MCF10A cells, we were able to 
identify two subpopulations with epigenetically distinct features at  SIM2  (Fig.  11.1 , 
reprinted from [ 174 ]), a putative tumor suppressor gene in the breast [ 344 – 346 ]. 
Notably, we could associate a particular nucleosome occupancy profi le with 

  Fig. 11.1    MAPit analysis of the TSS region of human  SIM2  in MCF10A cells. Nuclei (10 6 ) were 
probed with 10 U of wild-type M.CviPI, a GC DNMT, for 30 min at 37 °C.  SIM2  is expressed in 
MCF-10A cells. Each  horizontal line  represents 524 bp of chromatin from a single cell.  Circles  
represent CG sites and  triangles  represent GC sites.  Black-fi lled circles  and  red-fi lled triangles  
represent m 5 CG and G-m 5 C, respectively. GCG sites are represented by both  gray triangle  and 
 circles . GCG site methylation cannot rigorously be discriminated as being placed by endogenous 
or exogenous DNMT, but this can often be inferred from context.  Blue highlighted areas  represent 
147 bp of contiguous M.CviPI DNA footprint. Note that about half of the alleles have relatively 
high levels of endogenous methylation ( black-fi lled circles ). Based on molecules from cells not 
treated with M.CviPI, it can be inferred that  gray  GCG sites in these densely methylated MCF-10A 
alleles were likely methylated by endogenous DNMTs. The other half of the molecules is almost 
free of endogenous methylation but shows an accessible, nucleosome-length region high in M.
CviPI methylation ( red triangles ) highlighted in  red . No other technique can determine this bipar-
tite pattern of chromosome structure. The high accessibility to M.CviPI is probably due to histone 
depletion near the TSS. In contrast, this putative histone-free region is fl anked by protected spans 
of median length around 150 bp.  Numbers at the right  of each molecule depiction indicate the 
percentage of C conversion to T in non-CG and non-GC sequences. Nucleotides that failed to 
convert or reverted to a C during PCR amplifi cation are indicated by  vertical blue tick marks . 
Reprinted with permission from John Wiley & Sons, Inc       
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endogenous DNA methylation within a heterogeneous cell population. Coupling 
MAPit with next-generation sequencing offers an opportunity for large-scale inter-
rogation of chromatin structure in complex samples made up of heterogeneous cell 
populations [ 347 ]. DNA target enrichment strategies that provide suffi cient enrich-
ment of particular gene targets should allow for detection of chromatin states among 
rare tumor cell subpopulations as well as provide a measure for the level of epigen-
etic heterogeneity observed within a given biological sample.

11.5         Outlook 

 Whole genome assessments of breast cancer cell epigenomes have provided details 
suggesting that cancer-relevant epigenetic perturbations are not restricted to hyper-
methylation of tumor suppressor gene TSSs. Global chromatin rearrangements, 
expansion of repressive chromatin domains, and DNA methylation outside of TSSs 
or CGIs are all evident in breast cancer cells. Whether these features are functional 
contributors to tumorigenesis or passive by-products of an underlying dysregulation 
will require further study, especially since the mechanisms for the normal physio-
logic functions of these features remain unresolved. 

 Tumor heterogeneity has long been a barrier to successful therapeutic intervention. 
Further development of assays that permit epigenetic study at the level of single cells 
and/or molecules coupled with decreased costs of next-generation sequencing should 
allow for an unprecedented, in-depth view of epigenetic heterogeneity in human 
tumors. Characterization of epigenetically distinct subpopulations could provide 
important information regarding which pathways could be uniquely targeted in these 
cells and may provide a unique platform by which to combat metastatic tumor cells.     
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Abstract New research on the role of centrosomes in cancer cell proliferation has 
led to significant new insights into the multiple functions of this important organelle 
that serves not only as microtubule-organizing center (MTOC) in interphase and 
mitosis but also as important cellular communication center for signal transduction 
pathways and metabolic activities. Cancer cell centrosomes are distinguished from 
centrosomes in noncancer cells by specific abnormalities that include phosphoryla-
tion abnormalities, overexpression of centrosomal proteins, abnormalities in centri-
ole and centrosome duplication, formation of multipolar spindles that play a role in 
aneuploidy and genomic instability, and several others that are highlighted in this 
chapter. Because of their critical role in cancer cell proliferation, several lines of 
research have started to target centrosomes for therapeutic intervention to inhibit 
abnormal cancer cell proliferation and control tumor progression. While many aber-
rant mechanisms leading to centrosome dysfunctions are common to all tumor types, 
there are specific abnormalities observed in breast cancer that will be reviewed in the 
present chapter in which breast cancer-specific therapies will also be discussed.

12.1  Introduction

The significant role of centrosomes in cancer cell proliferation had been remarkably 
well recognized by Theodor Boveri [1] (translated into English in [2]) who laid the 
foundation for modern research on cancer cell centrosomes that is now being pursued 
on multiple levels including genetics and cell and molecular biology (reviewed in [3, 4]). 
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In mitosis, centrosomes form the bipolar mitotic spindle, but cancer cell centro-
somes can form multipolar spindles resulting in aneuploidy and genomic instability. 
In recent years, numerous studies have highlighted the role of this important organ-
elle not only as main microtubule-organizing center (MTOC) but also as important 
cellular communication hub for signal transduction pathways. The centrosome 
holds key roles in cell cycle regulation and in several other complex cellular func-
tions that directly or indirectly affect cell cycle progression and cellular metabolism. 
It serves as docking station for enzyme-carrying vesicles that are translocated along 
microtubules, and through its cell cycle-specific microtubule organization capabili-
ties, the centrosome controls and directs translocation of macromolecular com-
plexes and cellular organelles such as mitochondria. Centrosome dysfunctions have 
been implicated in numerous diseases (reviewed in [5]), and centrosome abnormali-
ties are strongly associated with cancer development and progression (reviewed in 
[6]). While cause and effect studies are still under investigation to determine when 
centrosomes become dysfunctional during the cascade of events leading to the 
observed abnormalities (reviewed in [6]), it has become clear that cancer cell cen-
trosomes are significantly different from noncancer cell centrosomes in several 
aspects including their state of phosphorylation [7]. Unlike centrosomes in somatic 
noncancer cells, cancer cell centrosomes are phosphorylated at inappropriate times 
throughout the cell cycle, as had first been recognized when examining breast ade-
nocarcinoma cells [7], while centrosomes in noncancer cells undergo precise cell 
cycle regulation and become phosphorylated only at the entry into mitosis during a 
process termed centrosome maturation that allows centrosomes to become division 
competent. The abnormal phosphorylation of centrosomes in cancer cells may indi-
cate that cancer cell centrosomes remain division competent in all cell cycle stages 
and have lost phosphorylation control. Numerous kinases are involved in the transi-
tion from G2 to mitosis [8–11] that play a role in centrosome protein phosphoryla-
tion while dephosphorylation takes place when cells exit mitosis as will be discussed 
in specific sections below.

Increased abnormal phosphorylation of cancer cell centrosomes [7] can lead to 
increases in microtubule organization with consequences for aberrant segregation of 
chromosomes to the dividing daughter cells resulting in loss of tumor suppressor 
genes in some cells and increases in tumor promoter genes in others. Other factors 
involved in cancer cell centrosome dysregulation have recently been reviewed by 
several investigators and include disruption of centrosome duplication [12], DNA 
damage caused by radiation [13], protein degradation dysfunctions [8, 9, 14], and 
numerous others including effects by environmental factors [4, 15, 16].

While many aberrant mechanisms leading to centrosome dysfunctions are com-
mon to all tumor types, there are specific abnormalities observed in breast cancer 
that will be reviewed in the present chapter in which breast cancer-specific therapies 
will also be discussed. The present review will address (1) structure and function of 
centrosomes and abnormalities in breast cancer, (2) regulation of the centriole–cen-
trosome complex, (3) the role of primary cilia in breast cancer, and (4) centrosomes 
as target for breast cancer therapy and prevention.
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12.2  Structure and Function of Centrosomes  
and Abnormalities in Breast Cancer

In a typical mammalian somatic cell, the centrosome organelle consists of a centrally 
positioned perpendicularly oriented centriole pair that is embedded in a centrosomal 
matrix (Fig. 12.1), oftentimes also termed pericentriolar material (PCM) composed 
of a lattice of coiled-coil proteins. The centrosomal matrix contains numerous spe-
cific centrosomal proteins including the γ-tubulin ring complexes (γ-TuRCs), peri-
centrin, centrin, and calcium-sensitive fibers [17] (reviewed in [3]). As the 
centrosome is not membrane bound, cell cycle-specific molecular remodeling is 
facilitated and includes remodeling of centrosomal matrix proteins. Centrioles, on 
the other hand, do not significantly change in their molecular composition through-
out the cell cycle. Centrioles in mammalian cells are composed of nine outer triplet 
microtubules forming a barrel-shaped small tube that does not contain central 
microtubules. Centriole duplication follows a semiconservative duplication pattern 
by which a younger (daughter) centriole forms perpendicular to the older (mother) 
centriole. Mother centrioles are structurally and functionally distinguished from 
daughter centrioles and contain appendages which will be discussed in more detail 
in Sect. 12.3. In mammalian cells centrioles play important roles in the assembly of 
specific centrosome proteins and in the duplication of centrosomal material [18]. As 
mentioned above, numerous centrosomal proteins are associated with the centro-
some matrix that undergo cell cycle-specific regulation. As many as 500 centro-
somal proteins have been determined in specific cell cycle stages [19] although a 
large number of these proteins may be classified as centrosome-associated proteins 
and others may use centrosomes as central hub for cell cycle-specific functions. 
While the specific composition of centrosomes is still under active investigation, it 
is clear that about 60 centrosomal proteins are present in a typical somatic cell inter-
phase centrosome (reviewed in [20]) which may be representative of the average 
centrosome protein quantities that compose interphase centrosomes in typical mam-
malian somatic cells. Centrosome core proteins are permanently associated with the 
centrosome structure while others are part of the cell cycle-dependent structural 
centrosomal changes in most cell systems. Some of these centrosome proteins are 
overexpressed in cancer cells and play a role in centrosome amplification which will 
be discussed in Sect. 12.3.

Centrosome proteins that have been identified in purified centrosomes by mass 
spectrometric analysis include the structural proteins (alpha-tubulin, beta-tubulin, 
gamma-tubulin, gamma-tubulin complex components 1–6, centrin 2 and 3, 
AKAP450, pericentrin/kendrin, ninein, pericentriolar material 1 (PCM1), ch-TOG 
protein, C-Nap1, Cep250, Cep2, centriole-associated protein CEP110, Cep1, cen-
triolin, centrosomal P4.1-associated protein (CPAP), CLIP-associating proteins 
CLASP1 and CLASP 2, ODF2, cenexin, Lis1, Nudel, EB1, centractin, myomega-
lin); the regulatory molecules (cell division protein 2 (Cdc2), Cdk1, cAMP- 
dependent protein kinase type II-alpha regulatory chain, cAMP-dependent protein 
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Fig. 12.1 (a) A typical centrosome in somatic cells is composed of centrosomal material surrounding 
two perpendicularly oriented centrioles. The centrosomal material, also referred to as pericentriolar 
material (PCM), consists of a meshwork of proteins embedded in a matrix of yet undetermined struc-
tural composition. Gamma-tubulin and the gamma-tubulin ring complex are embedded in the PCM 
and nucleate microtubules along with associated proteins. This diagram also shows two complexes 
within the PCM, the microtubule nucleating complex and the microtubule anchoring complex. The 
diagram in (b) shows in more detail the two centrioles (mother and daughter centriole) surrounded by 
PCM. Both centrioles are connected by interconnecting fibers. The mother centriole is distinguished 
from the daughter centriole by distal and subdistal appendages
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kinase-alpha catalytic subunit, serine/threonine protein kinase Plk1,  serine/threonine 
protein kinase Nek2, serine/threonine protein kinase Sak, Casein kinase I, delta and 
epsilon isoforms, protein phosphatase 2A, protein phosphatase 1 alpha isoform, 
14-3-3 proteins, epsilon and gamma isoforms); the motor and motor- related proteins 
(dynein heavy chain, dynein intermediate chain, dynein light chain, dynactin 1, p150 
Glued, dynactin 2, p50, dynactin 3); and the heat shock proteins, heat shock protein 
Hsp90, TCP subunits, and heat shock protein Hsp73.

The γ-tubulin ring complex, pericentrin, centrin, and the centrosome-associated 
protein NuMA (nuclear mitotic apparatus protein) will be discussed in more detail 
below.

Gamma-tubulin is an essential centrosomal protein that is primarily found in the 
centrosome core structure, but it can also serve as nucleating sites in areas away 
from the centrosome. The nucleating complex for microtubules from centrosomes 
is the ca. 2.2-MDa γ-TuRC that is associated with the centrosome core structure in 
all cells studied so far [21] and consists of 12 or 14 γ-tubulin molecules. Various 
other components are needed to anchor the γ-TuRC to the centrosome core structure 
including the large coiled-coil A-kinase anchoring proteins [22–31] and Cep135 
[32]. The microtubule minus-end binding proteins including the γ-TuRC are accu-
mulated at the proximal ends of centrioles, while tubulin polyglutamylation of the 
centriole walls modulates interaction between tubulin- and microtubule-associated 
proteins. More detailed information on γ-TuRC is available in a recent paper by 
Teixidó-Travesa et al. [33]. Microtubule anchoring to the centrosome includes nin-
ein that serves as a microtubule minus-end anchoring protein [34] and dynactin that 
has a major role in microtubule anchorage at centrosomes as well as at non- 
centrosomal anchorage sites. It is preferentially localized to the mother centriole 
and plays a role in microtubule organization [35–37].

In interphase, the γ-TuRC nucleates fewer but longer microtubules, while in 
mitosis, increased γ-TuRCs become associated with the centrosome, which is part 
of the centrosome maturation process that takes place from interphase to mitosis. 
Mitotic microtubules are shorter, larger in number, and highly dynamic. They are 
regulated by a number of cell cycle-specific proteins that participate in centrosome 
regulation such as the small GTPase Ran, Aurora A kinase, polo-like kinases, and 
others that will be discussed in Sect. 12.3.

Pericentrin is a centrosome protein that plays a role in centrosome and spindle 
organization [24, 25, 38]. It forms a ca. 3-MDa complex with γ-tubulin and depends 
on dynein for assembly onto centrosomes [38]. Pericentrin is involved in recruiting 
γ-tubulin to centrosomes [24], and it is part of the pericentrin/AKAP450 centro-
somal targeting (PACT) domain [27]. Mutation of the pericentrin gene results in 
loss of recruitment of several other centrosomal proteins, resulting in diseases of 
various kinds (reviewed in [5]).

Centrins are small proteins and members of a highly conserved subgroup of the 
EF-hand superfamily of Ca2+-binding proteins. It is primarily associated with cen-
trioles, but centrin is also an intrinsic component of centrosomes and has an essen-
tial role in the duplication of centrosomes [18, 39–41] (reviewed in [42]).

12 The Impact of Centrosome Abnormalities on Breast Cancer Development…



266

NuMA (nuclear mitotic apparatus protein) is a multifunctional protein (reviewed 
in [43, 44]) that is essential for the organization of the mitotic apparatus during mito-
sis. In interphase, NuMA serves as nuclear matrix protein but it is not associated with 
interphase centrosomes. During nuclear envelope breakdown NuMA becomes dis-
persed into the cytoplasm; Cdk1/cyclin B-dependent phosphorylation is important 
for translocation of NuMA from the nucleus into the cytoplasm [45] which allows its 
association with microtubules using a dynein–dynactin-mediated mechanism for its 
translocation along microtubules to the centrosome area where it forms an insoluble 
crescent around centrosomes that tethers microtubules precisely into the bipolar 
mitotic apparatus [46]. NuMA is important for cross-linking of spindle microtubules 
and for the organization and stabilization of spindle poles from early mitosis to ana-
phase. To relocate to the nucleus at the exit from mitosis, NuMA becomes dissoci-
ated from the mitotic spindle poles, a process requiring cdc1/cyclin B [47]. 
Destruction of cyclin B promotes exit from mitosis. Failure of NuMA to relocate to 
the nucleus will result in cytoplasmic NuMA spots that organize abnormal microtu-
bule asters [47] and may contribute to mitotic abnormalities. NuMA abnormalities 
are strongly associated with breast cancer. NuMA region on chromosome 11q13 has 
been associated with breast cancer susceptibility [48] and might serve as potential 
biomarker for breast cancer. As indicated above, NuMA requires specific signaling 
for its centrosome-associated functions which includes a signaling function of cyclin 
B (reviewed in [43]), but it has also been shown that signaling factors can be differ-
ent in different tissues; for example, NuMA has been shown to respond to hormonal 
signaling in cervical cancer cells [49]. Specific signaling mechanisms leading to 
NuMA abnormalities in breast cancer have not yet been determined.

Various structural centrosome abnormalities are observed in cancer tissue and 
are shown in schematic representation in Fig. 12.2. Morphological differences in 
cancer cell centrosomes compared to centrosomes in noncancerous healthy cells are 
clearly apparent and can include increased centrosome number and volume, excess 
of centrosomal material, supernumerary centrioles, abnormally oriented centrioles, 

Fig. 12.2 Schematic representation of various structural centriole–centrosome abnormalities in 
cancer cells. (a) Bipolar spindle in noncancer cells. (b–d) Examples of abnormalities in the spindle 
and centriole–centrosome complex as a result of centrosomal amplification or centriole abnormali-
ties. (b) Tripolar spindle. (c) Highly disorganized spindle with scattered centriole–centrosome 
complexes and scattered chromosomes. (d) Multipolar spindle. Red = centrosomes; green = micro-
tubules; blue = chromosomes
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and a host of imbalanced centrosomal proteins surrounding centrioles. The causes 
for such centrosomal abnormalities are not entirely clear but may be related to 
imbalances or dysfunctions of structural proteins, regulatory molecules, motor- 
related molecules, and others perhaps not yet known. In addition, basal bodies 
derived from dislocated primary cilia [50, 51] (discussed in Sect. 12.4) can form 
additional nucleation sites for microtubule organization and form microtubule- 
based asters that participate in chromosome segregation, thereby contributing to 
division abnormalities [50–53].

12.3  Regulation of the Centriole–Centrosome Complex

The regulation of the centriole–centrosome complex is critically important for its 
accurate functions, as centrosomes organize microtubules that attach to kineto-
chores in mitotic cells and are part of a complex molecular machinery involved in 
the accurate separation of chromosomes to the daughter cells during cell division. 
Cell cycle abnormalities and their consequences leading to abnormal cell divisions 
are shown in Fig. 12.3. To assure coordination of centrosome and chromosome 
dynamics, the duplication cycles of both have to be precisely regulated to yield syn-
chronized centrosome and chromosome duplication through parallel pathways of 
regulation to form the bipolar mitotic spindle that precisely partitions chromosomes 
equally to the daughter cells. In cancer cells, this coordination is lost, and centro-
somes can form multiple poles (as shown in Figs. 12.2 and 12.3) that do not separate 
chromosomes equally to the dividing daughter cells but form cells with unequal 
chromosome numbers and cells that may lack tumor suppressor genes, therefore 
giving advantage to cancer cell growth and loss of tissue architecture. Cell polarity 
becomes gradually lost with tumor progression and advanced histological grade.

12.3.1  Centrosome Regulation in Normal Cell Cycles

To understand centrosome misregulation in breast cancer, it is important to under-
stand centrosome regulation in normal cell cycles and determine the origins of cen-
trosome dysfunctions in breast cancer. Any of the misregulated steps may serve as 
target for the development of potential new breast cancer therapies to correct cel-
lular dysfunctions.

As mentioned above, centrosome duplication in a regular cell cycle is typically 
well synchronized with the DNA cycle, and it is important that centrosomes are 
duplicated only once during the cell cycle; excellent studies on duplication of cen-
trosomes have been performed and revealed that there is a block to centrosome 
reduplication which assures that centrosomes are duplicated accurately only once 
within a normal cell cycle (reviewed in [3, 8–11]).
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Centrosomes duplicate shortly before the G2 cell cycle stage in a precisely orches-
trated duplication program. This process begins with disorientation of the pair of 
centrioles, centriole duplication, and centriole disjunction resulting in sister centriole 
separation as reviewed in [54] and [55]. While excellent data have been obtained to 
understand centriole dynamics in the duplication process, we still do not yet fully 
understand centrosome dynamics in sufficient detail, and we frequently correlate 
centrosome duplication and separation to the better understood centriole dynamics.

Initiation of centrosome duplication is under cytoplasmic control and driven by 
cyclin-dependent kinase 2 (Cdk2) complexed with cyclin E or cyclin A that rises dur-
ing the late G1 stage (reviewed in [56]). It has also been shown that initiation of cen-
trosome duplication requires calcium/calmodulin-dependent kinase II (CaMKII) [57]; 
CaMKII phosphorylates centrosome proteins in vitro [58] and it is localized to spindle 

Fig. 12.3 (a–f) Somatic cell centrosome cycle within the cell cycle. (a) The single interphase 
centrosome containing a pair of centrioles is closely associated with the nucleus and nucleates an 
array of interphase microtubules. (b) Centriole–centrosome duplication occurs during the S phase 
in synchrony with DNA duplication. (c) Separation of the duplicated centriole–centrosome com-
plex toward the opposite spindle poles takes place in the early prophase stage. (d) The bipolar 
mitotic apparatus becomes established when each centriole–centrosome complex has reached the 
opposite pole, and the nuclear envelope has broken down. During this stage interphase centro-
somes mature into mitotic centrosomes acquiring mitosis-associated centrosomal proteins includ-
ing NuMA that had moved out of the nucleus during nuclear envelope breakdown. (e) The 
metaphase centrosome becomes highly compacted to organize the metaphase spindle with micro-
tubules attached to the kinetochores. (f) Telophase is the stage when centrosomal material becomes 
decompacted again before reorganizing into interphase centrosomes that associate with the nuclei 
of the separating daughter cells. (g–h) Centrosomal abnormalities associated with cell cycle dys-
functions. In cancer cells (g–h), centrosome and centriole numbers can amplify or over- replicate 
leading to aneuploidy or failure of cytokinesis
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poles [59]. Ubiquitin-mediated proteolysis of centrosomal proteins may be involved 
in the block to reduplication, as a variety of components of the SCF (Skp1/cullin/F-
box; ubiquitin ligase complex) proteolysis pathway as well as the 26S proteasome are 
localized to centrosomes in human cells [8–10, 14, 60–62].

Centrosome separation refers to the spatial separation of centrosome material 
around the nucleus and during mitosis which in part is driven by plus- and minus-
end- directed microtubule motor proteins. Phosphorylation of the centrosomal pro-
tein centrin plays a role in centrosome disjunction at the G2/prophase transition, and 
it has been shown that the Nek2 kinase is involved in centrosome disjunction [63] 
(reviewed in [64]).

Centrosome duplication and DNA replication both require hyperphosphoryla-
tion of the retinoblastoma (RB) protein and activation of Cdk2. Although the cen-
trosome cycle and DNA cycle are normally coupled through cell cycle-dependent 
checkpoints, it has been possible to dissociate the centrosome cycle from other cell 
cycle events which may also occur in cells during carcinogenesis (reviewed in [3]).

The mechanisms by which centrosomes become phosphorylated have been well 
studied for normal cell cycles (reviewed in [8–11]) and include specific centrosome 
proteins that depend on multiple signaling to allow the transition from G2 to mitosis. 
While it is clear that G2/M cell cycle transition is critical for centrosome phosphoryla-
tion to become division competent and allow cell proliferation (reviewed in [3]), it is 
not yet well understood why cancer cell centrosomes are abnormally phosphorylated 
throughout the cell cycle although misguided signal transduction resulting in mis-
targeting of key cell cycle regulators is likely to play a determining role. As indicated 
above, cyclin-dependent kinases are critically important for centrosome cycle pro-
gression. The G2/M transition requires Cdk1/cyclin B as well as Cdk1/cyclin A 
(reviewed in [65]). Cdk1 is localized to centrosomes at the onset of mitosis [66, 67], 
and Cdk1/cyclin B activation is detected in centrosomes during prophase [68].

Significant centrosome remodeling (also referred to as centrosome maturation) 
takes place during G2/M by acquiring mitotic centrosome proteins including polo- 
like kinase 1 (Plk1) [69], NuMA [70], and others, while interphase centrosome 
proteins such as C-Nap1 [71] or Nlp [72] are removed. γ-TuRC recruitment to the 
centrosome increases, assuring increased nucleation of microtubules for spindle 
formation.

Several of the important mitotic cell cycle regulators are concentrated at the cen-
trosome and include the abovementioned polo and Aurora A kinases [73] and cdc2/
cyclin B kinase [68]. Some of these proteins bind to the anaphase promotion com-
plex/cyclosome (APC/C); the activated APC/CCdc20 degrades cyclin B and securin 
to allow cell cycle exit from mitosis [74–77]. Polo-like kinases are required for 
multiple stages of mitotic progression and have been implicated in centrosome sep-
aration. Specific kinases including Plk1 are involved in centrosome and microtubule 
organization [78–85]; Plk1 and Plk3 both have been implicated in microtubule and 
centrosome functions in interphase and in mitosis [86–88]. Loss of Plk3 function 
has also been associated with loss of cell shape [88], affecting microtubule func-
tions underneath the plasma membrane which may play a role in loss of cellular 
polarity in cancer cells and tissue.
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Microtubule motor proteins are required for the composition of a functional 
mitotic centrosome, as several centrosomal proteins are shuttled along microtubules 
to the centrosome core structure including pericentrin, centrin, ninein, and NuMA. 
Imbalanced or disrupted transport of centrosome proteins can lead to pathologies 
related to centrosome and microtubule functions as well as to failures in organelle 
and vesicle distribution. Disruption of transport may either be the cause or effect in 
a chain of signal transduction events which can result in secondary pathologies.

12.3.2  Centrosome Misregulation Leading to Abnormalities  
in Breast Cancer

As indicated above, numerous centrosomal abnormalities are implicated in centro-
some dysfunctions, and new studies have started to analyze cause and effect of cen-
trosome dysfunctions on molecular levels with the goal to uncover and perhaps also 
repair centrosomal pathologies. Several causes have been identified so far, some of 
which are common to a variety of cancers while others are tissue specific. Oncogenic 
insults may result in a high number of mutation rates in cells predispositioned to 
tumor, and the mutation rate increases in cells that have reached replicative senes-
cence. Cervical carcinogenesis has strongly been associated with infections by high-
risk human papillomavirus (HPVs), and it has been proposed that the HPV E7 
oncoprotein may induce primary centrosome duplication errors and act as mitotic 
mutator (reviewed in [89]). Abnormal multipolar mitoses resulting from supernu-
merary centrosomes have clearly been associated with HPV-associated lesions, and 
centrosome abnormalities are already detected in early stages of tumor development. 
Excellent studies have shown that uncoupling of the cell division cycle from the cen-
trosome cycle subverts centrosome homeostasis [90]. Dissociation of centrosome 
cycles from DNA cycles may be among the causes for centrosome aberrations and 
multipolar spindle formations after irradiation. Aberrant hypermethylation has 
recently been implicated in inactivation of checkpoint genes that may influence cell 
cycle-dependent centrosome abnormalities as reported for pancreatic cancer [91, 92].

Environmental stress can result in the formation of aggresomes, which are often-
times localized close to centrosomes and are thought to be the result of misfolded pro-
teins [93–97]. Some of the aggresomes contain γ-tubulin and are associated with disease 
or disorders including noncancer diseases such as Parkinson’s and dementia [98].

In cancer cells, it has clearly been shown that overexpression of specific centro-
some proteins results in abnormal centrosome configurations and aneuploidy [53, 
99], highlighting the important role of centrosomes in cancer development and pro-
gression. Increased centrosome number and volume, supernumerary centrioles, 
accumulation of increased PCM, and abnormal phosphorylation of centrosomes 
have all been associated with cancer cell centrosomes followed by loss of cell polar-
ity [5, 7]. Several factors play a role in centrosome misregulation and subsequent 
abnormal microtubule nucleation, abnormal spindle formation, and chromosomal 
mis-segregation. As mentioned above, among the factors is the loss of tumor sup-
pressor genes that affect centrosome functions.
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Aurora kinases play central roles in the mitotic process and cell division, and 
Aurora A has been implicated in centrosome amplification in breast cancer. Aurora 
A kinase (AURKA) is an important centrosome-associated serine/threonine kinase 
and has been shown to play a role in tumor development when overexpressed in 
animal models [100, 101]. Aurora A localizes to centrosomes and overexpression of 
Aurora A causes multipolar mitotic spindles that play a role in early development of 
mammary tumors. The studies by Wang et al. have further shown that the pro- 
survival AKT pathway is activated which prevents cell death and allows cell prolif-
eration while generating tetraploid cells with accumulated centrosomes.

Deregulation of centrosome duplication and genes implicated in centrosome 
amplification are among the processes that lead to cascades of cell cycle-related 
abnormalities. The loss of the tumor suppressor p53 is associated with multiple cycles 
of centrosome duplication in one S phase resulting in multiple centrosome numbers 
[102]. It has been suggested by numerous investigators that p53 might play a role in 
the block to reduplication in synchrony with the DNA cycle. Viral oncoproteins that 
inactivate p53 also result in cells with supernumerary centrosomes as has been shown 
for the abovementioned papillomavirus (reviewed in [89]). However, different inves-
tigators have challenged that loss of p53 directly affects centrosome duplication [103] 
and attribute centrosome abnormalities to missing checkpoint functions after loss of 
p53. Regardless, loss of p53 following genotoxic stress or mitogenic stimulation 
plays a role in the generation of supernumerary centrosomes in breast cancer cells in 
which the CDK2/cyclin-dependent pathway is implicated [104, 105].

The breast- and ovary-specific tumor suppressor gene BRCA1 has been impli-
cated in the deregulation of centrosome duplication. It is involved in G2/M check-
point functions and it plays a role in preventing centrosome overduplication. Loss 
of BRCA1 may result in loss of the block to centrosome reduplication. Targeted 
deletion of BRCA1 exon11 leads to centrosome amplification [106]; it causes cen-
trosome overduplication and perhaps centrosome fragmentation in human breast 
cancer cell lines [107–109] (reviewed in [6]). A model for the regulation of the 
centrosome by BRCA1 has been presented in an excellent review by Kais and 
Parvin [14]. In this model BRCA1 ubiquitinates the already duplicated centrosomes 
to inhibit reduplication. Loss of BRCA1 results in supernumerary centrosomes dur-
ing the S phase. Overexpression of AURKA mimics the effects of BRCA1 loss. 
This model also proposes that overexpressed AURKA overrides the spindle check-
point and thereby contributes to abnormal mitosis. However, the exact mechanism 
by which BRCA1 affects centrosome duplication remains to be fully clarified.

We know that in normal cell cycles BRCA1 forms a complex with the BRCA1- 
associated RING domain 1 (BARD1) acting as E3 ubiquitin ligase. The BRCA1–
BARD1 complex ubiquitinates γ-tubulin and maintains centrosome homeostasis, 
preventing abnormal duplication in normal cell cycles and abnormal microtubule 
nucleation by γ-tubulin. The BRCA1-associated centrosomal ninein-like protein 
(Nlp) is also involved in centrosome abnormalities. In transgenic mice, spontaneous 
breast tumorigenesis occurs when Nlp is overexpressed, perhaps mimicking BRCA1 
loss [110]. The role of BRCA2 in centrosome functions is less explored than 
BRCA1 but we do have some data. It is known that the BRCA2-associated protein 
NPM forms a complex with ROCK2 to maintain numerical centrosome integrity; 
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aberrant regulation of this protein may result in centrosome overduplication and 
fragmentation [111]. The centrosomal kinase Nek2 further plays a role in promot-
ing centrosome accumulation which has been shown in breast epithelial cells [112]. 
Several other centrosomal components are involved in human breast cancer and 
include Pin1, a prolyl isomerase implicated in the activation of oncogenic pathways 
and induces centrosome overduplication in S-phase-arrested cell lines [113]. The 
Y-box binding protein YB-1 is overexpressed in 75 % of human breast cancers 
[114]. Recently, centrosome overduplication has been reported via nuclear expres-
sion of endogenous aryl hydrocarbon receptor (AhR) and cyclin E [115]. A recent 
large-scale breast cancer risk control study by Olson et al. [116] evaluated 
centrosome- related genes, genetic variation, and risk of breast cancer, suggesting 
that single nucleotide polymorphisms (SNPs) play a role in microtubule nucleation 
from the centrosome and contribute to breast cancer. The study further suggested 
that the centrosome pathway is highly enriched for SNPs that are associated for 
breast cancer risk.

As outlined above, while the cause and mechanisms leading to centrosome 
amplification in breast cancer have been addressed in several recent studies to gain 
an understanding on centrosome functions and dysfunctions, our understanding is 
still incomplete. Recent studies have focused on centrosome clustering that takes 
place during mitosis. New studies have shown that centrosome amplification, cell 
cycle control dysfunctions, and aggregation of centrosomal material for the forma-
tion of the spindle poles during mitosis are associated with centrosome clustering 
abnormalities. This topic has gained increased attention in recent years (reviewed in 
[117]), as amplified cancer cell centrosomes can cluster into abnormal bipolar spin-
dles that are not easily discernible from regular bipolar spindles with non-amplified 
centrosomes compared to the obvious tripolar or multipolar mitotic spindles that are 
most commonly seen in cancer cells. This topic has been reviewed in Drosophila 
cells [118] as well as in cancer cells [13, 117], and it is clear that more research is 
needed to understand the mechanisms underlying centrosome clustering in normal 
cells and dysfunctions in breast cancer cells.

Although the mechanisms underlying centrosome clustering into bipolar mitotic 
centrosomes are not well understood, several components of the cytoskeleton may 
be involved. Experiments by Kwon et al. [119] showed that the actin cytoskeleton 
plays a role in centrosome clustering, and our previous experiments on the inverte-
brate sea urchin model revealed that microtubules and microfilaments are required 
for centrosome dynamics that may be important for centrosome clustering.

It may be worthwhile considering that other components of the cytoskeleton par-
ticipate in centrosome clustering taking into account the nature of the centrosomal 
matrix structure and centrosome clustering mechanisms that have been described 
for reproductive (germ) cells. While we do not yet have a unifying model for the 
centrosome matrix structure, we have gained some understanding from invertebrate 
models. The invertebrate sea urchin egg has allowed us to first understand the for-
mation of tri- and multipolar centrosomes [120, 121] (reviewed in [3]) as a result of 
multiple sperm incorporation during fertilization that led us to understand abnormal 
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mitosis in cancer cells [1]; we may also take clues from the sea urchin model to 
understand the mechanisms underlying centrosome clustering. For example, we 
know that centrosomal foci can be induced through artificial activation in unfertil-
ized sea urchin eggs [122] and in pig oocytes [123, 124], and we further know from 
these studies that numerous small centrosomal foci can aggregate or cluster into 
larger and fewer centrosomal foci [122] (reviewed in [51]) which has led to a model 
in which centrosome clusters are composed of fibrous material and interconnected 
like string forming multiple yarn clusters. In the Spisula model, studies have 
revealed that the material left after high-salt extraction of centrosomal proteins dis-
played a fibrous component [125], resembling filament-like fibers that may contain 
intermediate filament-like components that contribute to the composition of the 
centrosome matrix. In our earlier studies we used Ah6, a monoclonal antibody to 
intermediate filament-like proteins to clearly stain centrosomes in sea urchin cells 
[126]. It may be speculated that a similar filament-like system may exist in somatic 
cells and function in the process of centrosome clustering. In unfertilized mouse 
oocytes, numerous centrosomal aggregates (clusters) are found in the MII ooplasm 
[121, 127, 128] (reviewed in [129]) that aggregate or cluster to form the meiotic 
spindle in a dynein-dependent process. These studies suggest that microtubule 
motor protein dynamics play a role in the centrosome clustering process. Such basic 
studies may provide relevant information on centrosome clustering in breast cancer 
cells and may allow new approaches for targeting amplified abnormal centrosome 
clustering to prevent the formation of abnormal bipolar mitosis and induce cell 
death rather than allow the formation of aneuploid cells. A possible role for micro-
tubule motor proteins in centrosome clustering in somatic cancer and noncancer 
cells has been discussed by Krämer et al. [117].

Other studies performed in Drosophila cells have shown that efficient centro-
some clustering requires a large number of proteins associated with a variety of 
cellular functions [118, 119] which includes genes that play a role in spindle assem-
bly checkpoint (SAC) functions. Spindle tension is necessary for clustering super-
numerary centrosomes into a bipolar mitotic apparatus. The studies by Kwon et al. 
[119] concluded that SAC does not monitor extra centrosomes but that the time 
during which SAC monitors proper kinetochore–microtubule attachments gives 
supernumerary centrosomes time for clustering into a bipolar mitotic apparatus. It 
was also suggested that microtubule-associated proteins (MAPs) are involved in 
centrosome clustering. It has further been shown [119] that efficient centrosome 
clustering depends on HSET (kinesin-related protein), as HSET depletion blocks 
centrosome clustering and promotes multipolar divisions. These studies showed 
that HSET selectively eliminates cells with supernumerary centrosomes without 
affecting viability of cells with normal centrosome numbers. As will be discussed in 
Sect. 12.5, preventing centrosome clustering into an abnormal bipolar mitotic appa-
ratus may provide new targets for breast cancer therapy, as multipolar mitoses 
undergo fragmented cell divisions with fewer chances for cancer cell viability [130] 
compared to abnormal bipolar mitotic spindles that can undergo cell division and 
produce aneuploid cells.
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12.4  The Role of Primary Cilia in Breast Cancer

During the past decade the primary cilium has gained increased attention when it 
was recognized that it plays important roles in signal transduction and that it is 
directly associated with cell cycle functions (reviewed in [5, 131]).

The primary cilium is a specialized nonmotile single cilium protruding from 
almost all cells in our body [132–134]. It is formed when dividing cells exit mitosis 
and the mother (elder) cell centriole becomes located at the cellular surface [135] to 
form a basal body as important nucleation site for microtubules that grow and build 
the interior skeleton of the primary cilium (reviewed in [131]). The primary cilium 
contains 9 outer microtubule doublets with no central microtubule pair (“9 + 0”), 
and it is covered by a specialized receptor-rich plasma membrane that plays a role 
in tissue-specific functions. This single cilium (one per cell) has an average diame-
ter of 0.2 μm and a length of ca. 8 μm.

The regulatory relationship between primary cilia functions and the cell cycle 
has clearly been established (reviewed in [136]). The primary cilium–centriole–cen-
trosome cycle begins during G1 when the distal end of the mother centriole becomes 
associated with a membrane vesicle (reviewed by [136]). Following this process the 
axoneme lengthens and the ciliary vesicle enlarges into a sheath to fuse and become 
continuous with the plasma membrane. Centrioles duplicate and lengthen during 
the subsequent S phase, achieving mature length in late G2/M. Centriole shortening 
then occurs at the G2/M transition. The coordination between primary cilia and cel-
lular centrosomes is highly regulated, and dysfunctions in this regulation result in 
cellular dysfunctions (reviewed in [131]). Closely related proteins are located in all 
three structures, basal body, primary cilium, and centrosomes, and play a role in 
cilia-related diseases.

It has clearly been shown that primary cilia functions are coordinated with cell 
cycle regulation, and new studies have revealed details of signal transduction cas-
cades between primary cilia and the centrosome that are essential for accurate cell 
cycle progression [3, 133, 134, 137–141]. At least three important pathways require 
signaling through primary cilia and include the Wnt, hedgehog, and platelet-derived 
growth factor (PDGF) pathways [142, 143]. Furthermore, MAP kinase signaling 
through primary cilia has been well documented which is important for centrosome 
functions. Downstream signaling cascades include phosphorylation and activation 
of the Akt and Mek1/2–Erk1/2 pathways [144]. For proper primary cilia functions, 
an intraflagellar transport (IFT) system is important to achieve ciliogenesis and 
transport of molecules to the cell body.

In cancer cells, the primary cilium becomes dislodged during progressive stages 
of cancer development [50–52], and it can clearly be visualized by transmission 
electron microscopy analysis, as the dislodged primary cilium may still contain 
characteristic cilia components [51]. On genetic and molecular levels, several cilia- 
associated genes are commonly mutated in breast cancer including Gli1, DNAH9, 
and RPGR1P1. Gli1 is a component of the hedgehog signaling pathway; DNAH9 is 
a component of the dynein motor that is important for IFT [145]. RPGR1P1 is 
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located in the basal body and serves as GTPase regulator [146]. The oncogenic 
Aurora A kinase (Aurora A) is localized to the basal body of primary cilia and either 
may play a role in primary cilia disassembly or may block primary cilia reassembly 
along with other interacting proteins [147] which may be perturbed in cancer cells, 
ascribing a possible role of Aurora A in primary cilia–cell cycle dysfunctions.

The role of primary cilia in hedgehog signaling is one of the best studied signal-
ing pathways in which localization of the transmembrane protein, Smoothened 
(Smo), in the primary cilium plays a role in the activation of the hedgehog path-
way; hedgehog-dependent transcription is mediated by the three transcription fac-
tors, Gli1, Gli2, and Gli3 [148, 149]. Recent studies have shown a role for hedgehog 
signaling through primary cilia in cancer progression and propose that the pres-
ence or absence of primary cilia may be a critical aspect in the design of 
therapeutics.

The regulation of the PDGF signaling pathway by primary cilia has been well 
explored by Schneider et al. [144] who have determined that the platelet-derived 
growth factor receptor-α (PDGFRα) localizes to primary cilia in murine embryonic 
fibroblast cells; it was further shown that activation of Akt and ERK1/2 pathways by 
PDGF ligand requires primary cilia. Importantly, expression of PDGFRα is a poor 
prognostic indicator of breast cancer [150, 151], clearly linking PDGF signaling 
through primary cilia to breast cancer.

It has been reported that the occurrence of primary cilia is decreased in breast 
cancer epithelial cells compared with normal breast epithelial cells, which has been 
explored in cultured cell lines and in breast tissue [152] (reviewed in detail in [152, 
153]) for specific breast cancer types and populations. The authors showed that 
while primary cilia are not frequently seen in breast epithelial cells, they are present 
in stromal cells in breast cancer. However, this field is still young and further clari-
fications and detailed studies on the reasons and functional relationships regarding 
the presence or absence of primary cilia in specific breast and breast cancer cell 
types and subpopulations are needed to determine the nature of the relationship 
between loss of primary cilia and their causative or consequential relationship dur-
ing tumorigenesis.

12.5  Centrosomes as Target for Breast Cancer Therapy  
and Prevention

Excellent general as well as detailed breast cancer and breast cancer treatment infor-
mation for patients and health professionals is available from the National Institutes 
of Health at http://www.cancer.gov/cancertopics/types/breast and addresses many 
aspects that will not be addressed in this chapter. Significant progress has been made 
in the diagnosis and treatment of breast cancer which has led to personalized treat-
ment procedures that target different abnormalities based on different types of can-
cer and different dysfunctions of molecular pathways and molecular abnormalities. 
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However, the disease is complex and breast cancer is still one of the leading causes 
of cancer deaths. Still about 50 % of cancer patients die of the disease primarily 
related to metastasis and development of resistance to chemotherapy. Tissue hetero-
geneity and genomic instability are among the complex abnormalities associated 
with cancer that present problems for the design of appropriate effective treatment 
and may require multiple targeted treatment strategies. Centrosomes are increas-
ingly being discussed as new targets for breast cancer treatment, as centrosomes are 
central to cell division; abnormal centrosomes are associated with abnormal cell 
divisions that are hallmark characteristics for cancer cells and tissue.

As centrosome abnormalities play critical roles in cancer cell proliferation and 
may have multiple causes, several lines of research have started to develop different 
strategies to target centrosomes for the development of new specific therapies to 
inhibit cancer cell proliferation.

Targeting cancer cell centrosomes includes targeting abnormal centrosomes 
directly or targeting signal transduction molecules that play a role in abnormal cen-
trosome formation. Such approaches may target overexpressed centrosome pro-
teins, abnormal centrosome clustering, abnormal primary cilia dynamics, 
overexpressed phosphorylation such as Aurora A that is implicated in centrosome 
hyperphosphorylation or other components in the phosphorylation cascade, as well 
as different molecules that play a role in centrosome function such as the aryl hydro-
carbon receptor (AhR) and cyclin E, as reported by Korzeniewski et al. [115]. Such 
approaches may involve the development of new pharmaceuticals, or it may also be 
possible to use specific dietary ingredients to control abnormal centrosome dynam-
ics and/or prevent cancer development or reoccurrence after surgical procedures or 
after radiation treatment during posttreatment recovery.

Pharmaceutical or dietary ingredients can either be used alone or in combination 
to target several abnormalities that may have been diagnosed for specific subpopula-
tions of breast cancer.

One of the best known plant derivatives that have been developed into a cancer- 
targeting pharmaceutical is Taxol. Paclitaxel (or Taxol) had originally been isolated 
from the gymnosperm Taxus brevifolia. It is known to target microtubule dynamics 
by primarily inhibiting depolymerization of microtubules, thereby preventing pro-
gression of mitosis and cell division ([154, 155] and others). Interactions of Taxol 
with microtubules at the centrosome–microtubule nucleation sites have been 
reported [156, 157], and it had been proposed that centrosomes in Taxol-treated 
cells may lose their capacity to nucleate microtubules [156]; in addition, Taxol may 
have other molecular target interactions that are still under investigation. Taxol has 
been widely used for ovarian and breast cancer treatment, but as with many antican-
cer drugs, drug resistance can develop [158, 159] which calls for development of 
new drugs to target the mitotic molecular machinery to prevent mitosis progression 
or to induce mitotic cell death to inhibit cancer cell division.

Plant-derived drugs are widely used to control a variety of diseases and include 
the microtubule drug colcemid to control gout. However, unlike colcemid or espe-
cially Taxol that has been thoroughly investigated and modified for the use as thera-
peutic anticancer drug, other plant-derived components have not yet undergone 
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thorough testing and are not yet available for efficient breast cancer treatment. This 
includes the potential use of curcumin, a natural polyphenol found in the rhizomes 
of Curcuma longa (turmeric) that has been shown to prevent or inhibit abnormal 
signaling cascades in cancer cells [160–164] which may include abnormal signaling 
to centrosomes. Curcumin has gained increased attention as potent anti-breast can-
cer drug, and new more potent curcumin analogues are now being developed to 
increase its antitumor efficiency [165, 166]. Curcumin and curcumin derivatives 
show potent inhibitory effects on several signaling pathways including the NFκB 
pathway [166] that plays a role in inflammation and in cancer development and 
progression.

The potential of using curcumin as anti-breast cancer drug is excellent and highly 
promising which has generated increased interest in this dietary ingredient for fur-
ther modifications into an efficient drug for breast cancer treatment. Because of cur-
cumin’s poor solubility and stability (in part due to its hydrophobicity) and other 
factors impacting its bioavailability, new emphasis has been placed on new strategies 
to increase efficient bioavailability for more potent metabolic impact. These include 
encapsulation of curcumin into liposomes, polymeric nanoparticles, biodegradable 
microspheres, curcumin–cyclodextrin complexes, and micellar formulations and 
hydrogels [162, 163, 167–171]. Recently, still more promising strategies have been 
proposed including the use of theragnostic curcumin-encapsulated nanoparticles 
that will increase bioavailability and allow more potent clinical applications [172]. 
Further specific improvements to increase bioavailability and stability include use of 
didodecyldimethylammonium bromide (DDAB) and pluronic F127 polymer as a 
surfactant/stabilizer, in association with the use of a rotating tube microfluidic plat-
form [164]. Such improvements are important and highly promising to modify the 
dietary ingredient into a potent anti-breast cancer pharmaceutical.

It will further be important to determine the biomolecular mechanisms by which 
curcumin acts on cancer cells that are still not well understood although several 
pathways have been implicated [173] and epigenetic effects have also been pro-
posed [174]. Our recent preliminary experiments clearly showed an effect on the 
microtubule cytoskeleton in several cancer cell lines, and we are currently exploring 
the effects on centrosomes (Schatten et al. unpublished).

Other studies have focused on the effects of curcumin on the NFκB pathway that 
may also affect centrosome dynamics although further studies are needed to pursue 
this line of thought and generate more data. The antimitotic drug griseofulvin that 
arrests cells at the G2/M transition stage in a concentration-dependent manner may 
provide indications that the NFκB pathway and centrosome dynamics are con-
nected, as griseofulvin has been shown to interfere with the NFκB pathway [175]. 
This finding is interesting, as griseofulvin has recently been shown to specifically 
inhibit supernumerary centrosome clustering in cancer cells which demonstrates its 
effects on centrosome dynamics (reviewed in [117]).

As mentioned in Sect. 12.3, prevention of amplified centrosome clustering into a 
bipolar mitotic apparatus is another approach that has been proposed as therapeutic 
targeting to control breast cancer cell proliferation, as non-clustered centrosomes 
cannot form an abnormal mitotic apparatus but induce cell fragmentation and cell 
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death rather than allowing formation of aneuploid cells with consequences for 
genomic instability. This approach is attractive, as centrosome clustering pathways 
are dispensable in cells with normal centrosome numbers, but centrosome cluster-
ing is required for supernumerary centrosomes to be distributed into the bipolar 
mitotic apparatus.

Griseofulvin has been identified as inhibitor of centrosomal clustering [176]. 
This drug is intriguing, as it may affect multiple sites in the mitotic process. 
Griseofulvin is already approved as an effective orally administered antifungal drug 
that affects microtubule formation and disrupts microtubule dynamics in vivo and in 
vitro [177–180]. Its mechanisms of action have been investigated in several cell 
systems ([178, 180–182]; other references therein), and several investigators have 
shown that griseofulvin induces multipolar mitoses in tumor cells [176, 178, 183, 
184]. At present it is not clear how griseofulvin affects centrosome clustering. It 
may interfere with microtubule minus ends rather than interacting with the centro-
some structure directly. Its action as antitumor drug needs further investigation, as 
determining its molecular mechanisms would allow specific targeting of breast can-
cer subpopulations and further allow its use in combination with other drugs to 
allow for more effective actions in combination therapies. However, toxicity studies 
are still needed to exclude negative effects on vital organs such as the liver.

12.6  Conclusion and Future Directions

While significant progress has been made in the overall diagnosis and treatment of 
breast cancer including personalized treatment procedures that target specific abnor-
malities in specific types of breast cancer, there are still no effective drugs for the 
treatment of breast cancer and new therapeutic approaches are needed. Furthermore, 
drug resistance to the most commonly used drugs such as paclitaxel can develop and 
calls for new targets to effectively combat breast cancer. Renewed interest has 
focused on centrosomes as target for breast cancer therapy, as centrosomes play 
decisive roles in allowing abnormal cell divisions that are hallmarks for cancer cells 
and tissue.

Unlike centrosomes in noncancer cells, breast cancer cell centrosomes are mis-
regulated, leading to abnormal centrosome phosphorylation throughout the cell 
cycle that remain division competent without undergoing phases of cell cycle rest. 
The abnormal phosphorylation of centrosomes in cancer cells indicates that cancer 
cell centrosomes have lost phosphorylation control. Misregulation of centrosomes 
leads to centrosome amplification with consequences for genomic instability and 
loss of tumor suppressor genes. Several new studies have started to determine mech-
anisms to control centrosome amplification which includes inhibiting signaling 
pathways that allow centrosome amplification, some of which are tissue specific. 
Targeted destruction of centrosome clustering has been another approach to produce 
fragmented cells that will lose viability and not participate in abnormal cell 
divisions.
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Other approaches include the development of new drug delivery systems to 
achieve more efficient bioavailability for more potent metabolic impact to destroy 
cancer cells. Such new developments are highly promising avenues for targeting 
breast cancer cell centrosomes and prevent or inhibit breast cancer cell growth and 
potential development into metastasis.
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    Abstract     The canonical function of cyclin D1 in regulating cell cycle progression 
was well established in the 1990s. The role of cyclin D1 has been expanded in the 
last decade. The novel functions of cyclin D1 include regulation of hormone signal-
ing through cross talk with nuclear receptors and cofactors, gene transcription 
through direct interaction with transcription factors, cell migration and invasion, 
cell death, angiogenesis, mitochondrial metabolism, DNA damage and repair, and 
chromosomal instability (CIN). High-throughput analysis, including whole-genome 
expression profi ling and deep sequencing, identifi ed cyclin D1 binding sites in the 
context of local chromatin. Proteomics and protein arrays identifi ed cyclin 
D1-interacting proteins, which confi rmed both known interactive proteins involved 
in cell cycle regulation and a number of new proteins. These novel experimental 
approaches revealed previously unrecognized functions of cyclin D1 which may 
contribute to the role of cyclin D1 in tumorigenesis. Herein, we discuss recent fi nd-
ings on the role of cyclin D1 in regulating metabolism, DNA damage, and CIN and 
how these processes may guide novel clinical management.  
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13.1         Introduction 

 Cyclin D1 (BCL1, PRAD1 oncogene) is a 34 kDa regulatory protein identifi ed as a 
prominent oncogenic driver in several subsets of cancer. Cyclin D1 conveys several 
essential cellular functions, including cell cycle regulation at the G1/S checkpoint, 
mitogenesis and metabolism, nuclear receptor hormone signaling, and maintenance 
of chromosomal stability [ 1 – 12 ]. Alternative splicing generates two isoforms of 
cyclin D1 (cyclin D1A, cyclin D1B) [ 13 ,  14 ] with distinct carboxyl terminus and 
cellular localizations. Cyclin D1 was initially identifi ed as the regulatory subunit of 
the holoenzyme that phosphorylates and inactivates the retinoblastoma protein 
(pRb) [ 15 ,  16 ] allowing for the release of E2F transcription factors and progression 
through G 1 /S phase of the cell cycle. Cyclin D1 was identifi ed as a candidate onco-
gene activated in a subset of parathyroid tumors through genetic rearrangement 
[ 17 ]. Cyclin D1 regulates progression through the cell cycle in a stepwise fashion 
from DNA replication, through cell division and cytokinesis [ 18 ]. The identifi cation 
of cyclin D1-associated proteins including p21 CIP1 /p27 KIP1  [ 19 ], tumor suppression 
(BRCA1) [ 20 ], transcription factors [ 9 ], and co-integrator proteins with histone ace-
tyl transferase (HAT) [ 7 ] or histone deacetylase activity (HDAC) [ 21 ] further 
expanded cyclin D1’s role in coordinating histone modifi cation and subsequent 
transcriptional amplifi cation of proliferation and/or differentiation genes [ 22 ]. The 
cyclin D1/Cdk4 complex was also found to phosphorylate non-Rb proteins includ-
ing nuclear respiratory protein 1 (NRF-1), Smad3, fi lamin A, BRCA1, and FoxM1 
demonstrating transcriptional infl uence on metabolic biogenesis, carcinogenesis, 
and cellular migration/invasion [ 3 ,  23 – 26 ]. Genomic deletion analysis supports the 
reliance on cyclin D1 for cellular proliferation, angiogenesis [ 27 ], and cellular 
migration [ 28 ]. Cyclin D1 is a modulator of transcription co-regulators such as 
BRCA1 and the co-integrators including SRC1, p300/CBP, and P/CAF [ 5 ,  7 ,  10 ,  20 , 
 29 ]. The abundance of cyclin D1 is a key determinant of both human and murine 
tumorigenesis [ 30 ]. As p300/CBP serve as rate-limiting co-integrator of many tran-
scription factors, it is likely that cyclin D1-dependent regulation of p300/CBP func-
tion has a broad role in transcriptional regulation. Cyclin D1 and p300 knockout 
analysis suggested a role for cyclin D1/p300 in DNA-replication fi delity [ 7 ]. 
Understanding the cellular and transcriptional roles of cyclin D1 could elucidate the 
possible therapeutic targets for cyclin D1 in cancer therapy.  

13.2     Structure 

 The  CCND1  gene is located on human chromosome 11 spanning about 15 kb 
including fi ve exons and four introns (Fig.  13.1a, b ). Northern blot and PCR analy-
sis of cDNA derived from cell lines and tissues identifi ed an alternatively spliced 
transcript of the  CCND1  gene [ 31 ]. The variant transcript shows a failure to splice 
3′ of exon 4 and encodes a protein with an altered carboxyl-terminal domain (cyclin 
D1 transcript B) (Fig.  13.1c ).
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   The human cyclin D1 protein consisted of 295 amino acids (Fig.  13.1c ). In addi-
tion to the domains identifi ed for Cdk4 and Rb binding, the HLH (a.a. 142–178, the 
C terminus of cyclin box) and E-rich (a.a. 272–280) motif have been described 
[ 6 ,  32 ]. These two motifs were necessary for binding nuclear receptors (AR and 
PPARγ) and PACSIN 2, respectively. The HLH motif, initially defi ned as a motif 
required for cyclin D1 repression of PPARγ transactivation, is important in regulat-
ing transcription cofactor binding. Deletion of the HLH region abolished cyclin D1 
repression of p300 [ 7 ]. The HLH motif also participates in cyclin D1 regulation of 
BRCA1 function at the ERα [ 20 ]. The E-rich motif, conserved between cyclin D1 
and D2, is required for PACSIN 2 binding and plays an essential role in regulating 
cell spreading and migration [ 32 ]. 

 The  CCND1  gene promoter and its regulation are well studied using the promoter- 
driven luciferase reporter system. This system has signifi cantly contributed to the 
understanding of cyclin D1 gene expression in cancer and other diseases [ 33 ]. Many 
classes of eukaryotic transcriptional regulatory elements were identifi ed within the 
1,745-bp upstream of  CCND1  5′-UTR as illustrated in Fig.  13.2a . Upon the binding 
of these transcription-responsive DNA elements, the expression of  CCND1  gene is 
tightly regulated in response to growth signaling [ 33 – 42 ]. The transcriptional regu-
lators of the  CCND1  gene expression have been summarized in our prior publica-
tion [ 43 ]. A 3,400-bp promoter sequence of  CCND1  gene has been cloned, providing 
a unique tool to study additional upstream transcriptional regulatory elements of the 
 CCND1  gene [ 44 ].

  Fig. 13.1    Structure of CCND1 gene and protein product (cyclin D1). ( a ) Schematic representation 
of genomic structure of cyclin D1 gene. ( b ) Cyclin D1 and alternatively spliced cyclin D1b. ( c ) The 
functional domains of cyclin D1 protein       
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   MicroRNAs (miRNAs) are a class of small noncoding RNA molecules (~21–25 
nucleotides in length) that regulate gene expression at the posttranscriptional levels. 
The inverse correlation between the expression of miR-17-5p/miR-20a miRNA 
cluster and  CCND1  led to the discovery of a miR-17-5p/miR-20a binding site in the 
3′-UTR of  CCND1  gene (Fig.  13.2b ). miR-17-5p/miR-20a, through binding the 
 CCND1  3′-UTR and suppressing cyclin D1 protein translation, inhibited breast 
 cancer cell proliferation and tumor colony formation [ 45 ].  

13.3     Expression, Cellular Localization, and Regulation 

 Two forms of  CCND1  mRNA (transcript A and B) are generated in a variety of cells 
and tissues. Although the function of this polymorphism remains controversial, spe-
cifi c polymorphisms of cyclin D1 correlate with risk or mortality in diseases includ-
ing non-small cell cancer of the lung [ 31 ]; squamous cell carcinoma of the head and 
neck [ 46 ]; epithelial ovarian cancer [ 47 ]; hereditary nonpolyposis colorectal cancer 

  Fig. 13.2    The regulatory networks of cyclin D1 gene expression. ( a ) Schematic representation of 
 CCND1  gene promoter (−1,745 bp) showing transcription factors and cofactors binding. ( b ) 
3′-UTR of  CCND1  gene contains miRNA binding sites       
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[ 48 ]; risk of urinary bladder cancer and prostate cancer [ 49 ,  50 ]; esophageal, gas-
tric, and cardiac carcinoma [ 51 ]; and early onset of lung cancer, especially squa-
mous cell carcinoma [ 52 ]. Cyclin D1 isoform abundance also predicts response to 
adjuvant chemotherapy, for example, in colorectal cancer [ 53 ]. Cyclin D1 is mainly 
localized in the nucleus of dividing cells; however, membrane and cytosolic distri-
bution have been reported [ 32 ]. Through binding p21 CIP1  or p27 KIP1 , the cyclin D1/
Cdk4/6 is able to translocate to the nucleus and elicit a transcriptional effect. In 
some studies, the protein encoded by transcript B was constitutively localized in the 
nucleus, possibly due to the loss of threonine 286, the phosphorylation site of tran-
script A required for nuclear export [ 54 ,  55 ]. The kinase that phosphorylates threo-
nine 286 is contested as GSK3β seems to have a limited role in some studies [ 56 ].  

13.4     Biological Functions 

13.4.1     Cyclin D1 as a Cell Cycle Regulator 

 The cyclin-dependent kinase holoenzymes are a family of serine/threonine kinases 
that control progression through the cell cycle [ 15 ,  16 ,  22 ]. The cyclins encode 
regulatory subunits of the kinases, which phosphorylate specifi c proteins, including 
the retinoblastoma (Rb) protein, to promote transition through specifi c cell cycle 
checkpoints [ 22 ,  30 ,  57 ,  58 ]. Cyclin D1 plays a pivotal role in G 1 /S-phase cell cycle 
progression in fi broblasts and is rate limiting in growth factor- or estrogen-induced 
mammary epithelial cell proliferation [ 2 ,  59 ].  

13.4.2     Cyclin D1-Dependent Tumorigenesis 

 Cyclin D1 is capable of transforming fi broblast and functions in collaborative onco-
genesis with E1A, ErbB2, and Ras [ 60 – 62 ]. Cyclin D1 is suffi cient for tumorigen-
esis when targeted to specifi c organs in transgenic mice [ 63 ]. Ectopic expression of 
a fusion gene between Cdk4 and cyclin D1 immortalized primary REF and collabo-
rated with H-Ras G12V mutant in anchorage-independent growth in vitro and tumor 
formation in vivo. In contrast, cyclin D1 and H-RasG12V co-expression alone did 
not lead to transformation, illustrating the importance of Cdk4 in transformation of 
REFs. A Cdk4 mutant, K35M, that can bind to p16 INK4  but has lost catalytic activity 
due to its inability to bind ATP collaborates with H-Ras in transforming primary rat 
fi broblasts as effi ciently as the wild-type Cdk4. The Cdk4/R24C gain of function 
mutant, which evades binding to p16 INK4 , can’t collaborate with cyclin D1 and 
H-Ras in transformation. Expression of p16 INK4 or p21 CIP1  inhibits the transformation 
of REFs by cyclin D1/H-Ras, Cdk4/H-Ras, or c-myc/H-Ras. 
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  Ccnd  −/−  mice are resistant to oncogene-induced skin and gastrointestinal tumors 
[ 64 ,  65 ]. Mice with knock-in of a homozygous of cyclin D1 mutant (D1 KE/KE ) that is 
unable to induce pRb phosphorylation or bind p27 KIP1  or p21 CIP1  show normal mam-
mary development in contrast with  Cdk4  −/−  mice [ 66 ]. The mice with a knock-in of 
D1 KE/KE  show resistance to Neu-induced mammary tumorigenesis. The role of cyclin 
D1-dependent phosphorylation of pRb in senescence, cell cycle progression, and 
transformation may be cell type specifi c. S-phase entry due to overexpression of 
cyclin D1/Cdk4 is independent of pRb phosphorylation [ 67 ]. Furthermore, cyclin 
D1 mutants that evade pRb binding remain oncogenically active in promoting G 1 /S 
cell cycle transition and abrogate pRb function in senescence assays [ 68 ]. Abrogation 
of D1 by siRNA or ectopic expression of a Cdk4 mutant that is kinase dead prevents 
tumor formation elucidating cyclin D1/Cdk4 reliance in tumorigenesis [ 69 ].  

13.4.3     Cyclin D1 Regulation of Nuclear Hormone Signaling 

 Cyclin D1 regulates nuclear hormone signaling resulting in distinct transcription 
outputs; however, the physiological signifi cance in vivo has at this time been veri-
fi ed primarily for PPARγ. Cyclin D1 binds to the estrogen receptor α (ERα) and 
enhances ligand-independent reporter gene activity [ 8 ,  9 ]. Cyclin D1 increases the 
association between ERα and its co-activators [ 10 ]. Cyclin D1 also augments ERα 
signaling via inactivation of BRCA1-mediated repression [ 20 ]. In vivo, estradiol 
(E2) failed to induced progesterone receptor expression effectively in  Ccnd  −/−  mice, 
suggesting cyclin D1 is required for E2 signaling in vivo [ 70 ]. P/CAF potentiates 
ERα activation through direct binding between cyclin D1 and P/CAF, showing the 
receptor-specifi c positive regulation [ 71 ]. Conversely, androgen receptor (AR) 
reporter gene activity upon ligand binding is inhibited by cyclin D1 through a com-
petition mechanism by which cyclin D1 recruits corepressors with HDAC activity 
and disengages AR and co-activator binding [ 5 ,  8 – 10 ]. 

 Investigation of the in vivo function of cyclin D1 identifi ed PPARγ as a rate- 
limiting target of cyclin D1 [ 6 ]. Using cyclin D1 knockout mice, it was shown that 
cyclin D1 abundance determines nuclear receptor recruitment to transcription factor 
binding sites in the context of chromatin in ChIP assays [ 65 ]. The mechanisms by 
which cyclin D1 regulates nuclear receptor function correlate with cyclin D1 occu-
pancy in the context of local chromatin [ 21 ]. The endogenous PPARE of  LPL  gene 
promoter binds cyclin D1 associated with the recruitment of chromatin-modifying 
proteins (HP1α, Suv29, HDAC1/3, p300). The occupancy of cyclin D1 on gene 
promoters assessed by ChIP-on-chip technology mapped cyclin D1 to approxi-
mately 900 genes [ 11 ]. Subsequent genome-wide binding site mapping of cyclin D1 
by ChIP-Seq identifi ed cyclin D1 at these sites and additional sites (total 1200 sites) 
including those bound by nuclear receptors (ERα and PPARγ) [ 12 ]. Based on these 
recent fi ndings, it is time to reexamine the interaction between cyclin D1 and nuclear 
receptors to determine whether cyclin D1 in the context of local chromatin regulates 
nuclear receptor function.  
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13.4.4     Cyclin D1 Promotion of Cell Migration 

 Given that a subset of human cancer cyclin D1 overexpression correlated with 
metastasis, we hypothesized that cyclin D1 may promote cell migration. In support 
of this hypothesis, we found that  Ccnd1  −/−  mouse macrophages and embryonic 
fi broblasts (MEFs) displayed increased cellular adherence, defective motility, and 
an impaired wound healing response [ 28 ]. The mechanism by which cyclin D1 
promotes cell migration includes transcriptional repression of thrombospondin-1 
(TSP-1) and inhibition of RhoA, and thereby ROCK II kinase, a serine/threonine 
kinase [ 72 ,  73 ]. Cyclin D1-bound p27 KIP1  was essential for the interaction with 
RhoA and involved the residue defi ned in the cyclin D1 KE mutant. Cyclin D1A, 
but not the alternatively spliced form cyclin D1B, rescued the migratory defects of 
 Ccnd1  −/−  MEFs, suggesting the C terminus of cyclin D1 contributes to the migration 
function [ 74 ]. Further studies showed that the E-rich motif located in the C terminus 
of cyclin D1 is required for binding to PACSIN 2, a protein kinase C and casein 
kinase substrate in neurons [ 32 ]. Mass spectrometry identifi ed that cyclin D1/Cdk4 
binds to, and phosphorylates, fi lamin A [ 24 ], providing additional evidence in sup-
port of cyclin D1’s role in cell migration.  

13.4.5     Cyclin D1 Regulation of DNA Damage and Cell Death 

 Earlier studies have shown that cyclin D1 expression is selectively induced in dying 
neurons [ 75 ], indicating a role of cyclin D1 in cell death. γ-irradiation and UV irra-
diation induce apoptosis, which is potentiated by cyclin D1 defi ciency [ 36 ,  76 ]. 
Cyclin D1 expression inhibited apoptosis in chorionic trophoblast, which was 
dependent on the presence of p300. Consistent with this, the CH3 region of p300 
required for induction of cyclin D1 gene expression was required for the inhibition 
of apoptosis. p300 inhibited apoptosis in  Ccnd  +/+  fi broblasts but increased apoptosis 
in  Ccnd  −/−  [ 36 ]. Bcl-2 prevents cells from undergoing apoptosis, while Bcl-2 
increased cyclin D1 expression through promoter activation [ 77 ]. A recent intrigu-
ing fi nding from the Hinds laboratory was that mammary epithelial cells (MECs) 
derived from  Ccnd1   KE / KE   mice, which are defi cient in cyclin D1 kinase activity, 
exhibit an autophagy-like process, which is resistant to oncoprotein ErbB2-induced 
senescence both in vivo and in cultured cells [ 78 ]. The molecular mechanism by 
which cyclin D1 regulates autophagy remains to be fully understood. 

 The role for cyclin D1 in DNA repair was recognized nearly 2 decades ago. Cells 
in the G 1  phase exposed to UV lost cyclin D1 protein expression, and cyclin D1 
overexpression prevented the cells from repairing the damaged DNA [ 79 ]. In exam-
ining the mechanism by which cyclin D1 expression enhanced the DNA damage 
response (DDR), Li et al. showed that cyclin D1 enhanced γ-H2AX phosphoryla-
tion, facilitated the assembly of DNA repair foci, and recruited specifi c DNA repair 
factors to chromatin [ 80 ]. Cyclin D1 deletion in fi broblasts or siRNA-mediated 
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reduction of endogenous cyclin D1 reduced the 5-fl uorouracil-mediated DDR in 
colon cancer cells. Induction of the DDR was uncoupled from the role of cyclin D1 
in the induction of DNA synthesis and G 1 /S transition as the effect of cyclin D1 was 
observed in G 1 -/G 0 -arrested cells. Heterozygous loss of the  BRCA1  or  BRCA2  
alleles predisposes an individual to developing breast and ovarian cancers. BRCA1 
is a multifunctional tumor suppressor protein forming complexes with proteins gov-
erning cell cycle, gene transcription, DNA damage response, and chromatin remod-
eling. Cyclin D1 physically interacts with BRCA1 and antagonizes BRCA1 
repression on ERα function in regulating gene expression [ 20 ], suggesting a func-
tional network may be involved in DNA damage response and repair. ERα, particu-
larly the membrane-bound form, induces DNA damage response upon ligand 
activation [ 81 ]. Whether cyclin D1 regulation of ERα participates in membrane- 
bound ERα signaling warrants investigation. 

 Cyclin D1 enhancement of the DNA damage response involved cyclin D1 induc-
tion of RAD51 expression, binding to RAD51, and recruitment of cyclin D1 to the 
local chromatin at sites of damaged DNA [ 80 ] (Fig.  13.3 ). Subsequent proteomic 
analyses of cyclin D1 binding proteins identifi ed a network of DNA repair proteins, 
which also included RAD51 [ 82 ]. γ-irradiation was shown to enhance cyclin D1 and 
RAD51 binding. Cyclin D1 was recruited to DNA damage sites in a BRCA2-
dependent manner. BRCA2 recruitment to DNA damage sites did not require cyclin 
D1; however, cyclin D1 defi ciency reduced RAD51 recruitment to damaged DNA 
[ 82 ]. Collectively, these studies illustrate the involvement of cyclin D1 in binding to 
proteins involved in both homologous and nonhomologous DNA damage repair and 
the role of cyclin D1 in mediating both the response to DNA damage and the subse-
quent repair and cell survival.

13.4.6        Cyclin D1 Regulation of Metabolism and Energy 
Homeostasis 

 Cell cycle progression and mitochondrial biogenesis are integrated biological pro-
cesses. The underlying mechanisms were revealed in studies of the  Ccnd1  −/−  mice [ 3 ]. 
Cyclin D1 inhibits mitochondria function and size [ 3 ,  4 ]. The kinase function of cyclin 
D1 was required for repression of mitochondrial activity through direct phosphoryla-
tion of nuclear respiratory factor 1 (NRF-1), a transcription factor involved in promot-
ing mitochondrial biogenesis via induction of mitochondria transcription factor A 
(mtTFA). Cyclin D1 binds to NRF-1 in cells by immunoprecipitation- Western blot 
(IP-WB) analysis and by mammalian 2-hybrid assays. Cyclin D1 and NRF-1 share 
substantial overlap in microarray-based gene expression studies. Of the 254 candidate 
NRF-1-inducible genes and 210 genes repressed by cyclin D1, 73 similar genes and 
18 identical genes were shared between the two gene sets [ 3 ]. Increased cyclin D1 
abundance reduced mitochondrial activity. From    these studies, we proposed a new 
model in which cyclin D1 integrates cell cycle progression with mitochondrial 
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biogenesis. Reduced mitochondrial activity from increased cyclin D1 expression 
shifts glucose metabolism toward cytosolic glycolysis. Such a metabolic shift is 
known to occur during tumor progression as a component of the Warburg effect. 

 Tissue-specifi c inducible cyclin D1 antisense transgenics confi rmed that cyclin 
D1 inhibits mitochondrial biogenesis [ 4 ]. Mitochondrial activity was enhanced by 
antisense inactivation of Ccnd1 expression or small interfering RNA to  Ccnd1 . 
Global gene expression profi ling and functional analysis of mammary gland- 
targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mito-
chondrial activity and aerobic glycolysis in vivo. Together, these studies suggest 
that cyclin D1 integrates nuclear DNA synthesis and mitochondrial function by 
phosphorylating Rb and NRF-1, respectively.  

  Fig. 13.3    Immobilization of cyclin D1 on chromatin leads to DDR activation. ( a ) Confocal immu-
nofl uorescence microscopy of NIH2/4 cells transiently transfected with plasmid DNA encoding 
cyclin D1 isoforms or repair factor fused to Cherry-lacR-NLS ( red ). Phosphorylation of γH2AX 
( green ) indicates DDR activation. ( b ) Cyclin D1a isoform recruits Rad51 to local chromatin in 
response to DNA damage. NIH2/4 cells were transfected with Cherry-lacR-NLS-cyclin D1a, 
Cherry-lacR-NLS-cyclin D1b, or vector control Cherry-lacR-NLS by using Nucleofector system. 
Twenty-four hour later cells were treated with 0.4 μM doxorubicin for 3 h. Then immunofl uores-
cence staining was conducted using specifi c antibody to Rad51. The  lower panel  shows a model of 
Cherry-lacR/lacO system and cyclin D1a inducing γH2AX foci in the absence of DNA damage, 
cyclin D1a recruiting Rad51 to local chromatin in response to DNA damage, and cyclin D1b 
failing to recruit Rad51 even in the response to DNA damage (This fi gure was derived from prior 
publication [ 80 ])       
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13.4.7     Cyclin D1 Promotes Chromosomal Instability 

 In view of our prior fi ndings that cyclin D1 regulated transcription factor occupancy 
at target DNA sites by ChIP [ 65 ] and that a DNA-bound form of cyclin D1 by ChIP 
analysis recruited chromatin remodeling enzymes, we conducted a genome-wide 
interrogation of cyclin D1 binding sites in the context of local chromatin by ChIP- 
Seq. We identifi ed 3,222 regions (intervals) bound by cyclin D1. Approximately 
70 % of these intervals were located in 10 kb of 2,840 genes with a high density 
located within 500 bp of the transcriptional start site (ATG) (Fig.  13.4a ). The tran-
scription factors enriched at the interval region included ERα, Sp1, and Ctcf. 
Interestingly, among these transcription factors, Ctcf (CCCTC-binding factor), a 
zinc-fi nger DNA binding protein that regulates gene transcription enhancer function, 
is also involved in sister chromatid cohesion. We interrogated the signaling pathways 
associated with the genes bound by cyclin D1. Cell division emerged to be one of the 
most enriched terms, which is involved in G 2 /M phase and cellular mitosis. Increased 
abundance of cyclin D1 during G 2 /M has previously been described [ 83 ]. Given that 
mis-regulation of genes that govern the mitotic phase often leads to chromosomal 
instability (CIN), we next determined the functional consequence of cyclin D1 using 
combined expression profi le, fl uorescence- activated cell sorting (FACS) analysis, 
and spectral karyotyping (SKY) approaches. Rescue of cyclin D1 expression in 

  Fig. 13.4    Cyclin D1 rescue of  Ccnd  −/−  MEFs induces chromosomal instability (CIN). ( a ) 
Functional annotation clustering by DAVID of cyclin D1-associated genes, based on percent 
enrichment score of the top hits. ( b ) Cyclin D1-bound promoter regions (0 to −500 bp) were 
enriched in genes demonstrating an association with CIN ( p  < 0.0001). ( c ) The expression profi le 
for cyclin D1-induced genes identifi ed by microarray [ 74 ] was enriched for high CIN score 
( p  < 0.0001). ( d ) PI staining demonstrated increased polyploidy in cyclin D1-rescued versus con-
trol  Ccnd1  −/−  MEFs. ( e ) Quantitation of PI staining based on three separate cell lines (mean ± SEM) 
 p  < 0.005 (This fi gure was derived from our prior publication [ 12 ])       
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MEFs using a cyclin D1 retrovirus induced expression of CIN-associated genes 
(Fig.  13.4b, c ). The proportion of polyploid cells increased within three cellular divi-
sions, increasing the relative proportion of 4N and 8N cells by 45 and 15 %, respec-
tively in  Ccnd1  −/−  cells (Fig.  13.4e ). Abnormal karyotype was induced by cyclin D1 
by SKY analysis, with 75 % of  Ccnd1  −/−  MEF metaphases having a normal karyo-
type compared with 30 % of the cyclin D1-rescued  Ccnd1  −/−  MEFs.

   To further classify the chromosomal abnormalities, we employed spectral karyo-
typing (SKY), a whole-genome painting assay that can recognize complex genomic 
rearrangements. In addition to the induction of aneuploidy, cyclin D1 also induced a 
large number of reciprocal and nonreciprocal translocations. The nonreciprocal 
translocations can be potently transforming if the DNA fragment involved carries 
oncogenes or tumor suppressors at the breakpoint. In cyclin D1-rescued  Ccnd1  −/−  
fi broblasts, over 50 % of the cells exhibited multiple centrosomes that give rise to 
increased multipolar spindles in prometaphase/metaphase. Together these fi ndings 
demonstrate that cyclin D1 induces chromosomal abnormalities, which may contrib-
ute to oncogenic transformation. Cyclin D1 induction of CIN was confi rmed in vivo 
using tetracycline (Tet)-inducible cyclin D1 transgenic mice. In this mammary gland-
targeted Tet-inducible model, a short-term (7 days) induction of cyclin D1 expression 
promoted CIN [ 12 ]. The gene expression profi le of tumors derived from MMTV-
cyclin D1 mice showed enrichment for the CIN signature. Importantly, cyclin D1 
mRNA expression correlates with the highest ranking CIN genes in luminal B sub-
type of human breast cancer in the analysis of >2,200 breast cancer specimens [ 12 ].   

13.5     Medical Applications 

 Cyclin D1 couples signals from cell surface receptors to transcription factors and 
co-integrator proteins, thereby regulating diverse gene expression networks. Cyclin 
D1 is expressed at high levels in a variety of tumors, including breast, prostate, and 
colon cancer. The functional requirement for cyclin D1 in cell cycle progression and 
cellular proliferation makes it an ideal target for molecular therapeutics. Molecules 
such as fl avopiridol, rapamycin, and 17-allylamino-17-demethoxygeldanamycin 
have been assessed as inhibitors of cyclin D1 expression. Rapamycin and herbimy-
cin inhibit the translation of cyclin D1 mRNA. Great efforts have been made to 
develop inhibitors of cyclin D1/Cdk4 kinase activity. This has been challenging due 
to the nonspecifi city of molecules that target the kinase core; however, promising 
compounds are being tested. The kinase-independent function of cyclin D1 war-
rants alternative approaches to target cyclin D1 itself. Thus, understanding the regu-
latory networks that enhance cyclin D1 expression will help in defi ning the strategies 
to develop molecular inhibitors. There is interest in the clinic in using drugs that 
inhibit tumor CIN. The high CIN index associated with cyclin D1 overexpression in 
luminal B breast cancer [ 12 ] provides the basis for such a targeted therapy. 
Understanding the transcriptional role of cyclin D1 in promoting CIN is of consid-
erable clinical importance given the frequent overexpression of cyclin D1 in a wide 
variety of human cancers.     
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    Abstract     Infl ammatory breast cancer (IBC) is the most lethal variant of locally 
advanced breast cancer and carries with it a very low survival rate of 40 % at 5 
years. IBC does not present as a lump but rather mimics characteristics of an infl am-
mation that fi rst appears as swelling of the breast, with edema, redness, and com-
mon lymph node involvement. The physical changes in the breast are associated 
with the presence of nests of aggregated tumor cells, defi ned as tumor emboli that 
are encircled by lymphatic vessels, effectively blocking lymphatic drainage. Little 
is understood about IBC, in part due to the lack of preclinical models that recapitu-
late its distinct characteristics. This chapter provides an overview of our studies that 
have profi led all available preclinical models of IBC, including two new models 
recently developed, to elucidate the molecular underpinnings of this lethal variant of 
breast cancer. Our studies demonstrate that IBC is enriched for cells that express 
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CD44 +  and CD133 +  and have aldehyde dehydrogenase-1 (ALDH1) activity, 
supporting a cancer stem cell/tumor initiating phenotype, associated with a very 
high metastatic potential to multiple distant organ sites. IBC has a distinct gene 
signature including E-cadherin expression with associated loss of expression of 
 ZEB 1, a transcriptional repressor of E-cadherin. IBC is also characterized by loss of 
expression of genes within the transforming growth factor-beta (TGFβ) signaling 
pathway, which is permissive for cohesive invasion by IBC tumor emboli. Taken 
together, these studies suggest that IBC is a very distinct variant of breast cancer 
characterized by epithelial plasticity, enrichment of a stem cell phenotype, and 
cohesive invasion as an adaptive survival mechanism, consistent with the defi nition 
of IBC as the most metastatic variant of breast cancer.  

14.1         Introduction 

 Infl ammatory breast cancer (IBC) is the most lethal form of locally advanced breast 
cancer (reviewed in [ 1 ]). Although primary IBC is less commonly diagnosed than 
other types of breast cancer, accounting for an estimated 2–5 % of all breast cancers 
in the United States and an estimated 13 % worldwide, IBC is responsible for a 
disproportionate number of breast cancer-related deaths (7 %) that occur each year 
worldwide [ 2 ,  3 ]. 

 A clinical diagnosis of IBC is based on the combination of the physical appear-
ance of the affected breast, a careful medical history, physical examination, and 
pathological fi ndings from a skin biopsy and/or needle or core biopsy to confi rm the 
diagnosis of carcinoma [ 4 ]. IBC does not occur as a lump but rather is characterized 
by a very rapid onset of changes in the skin overlying the involved breast that 
include edema, redness, and swelling in over one half to two thirds of the breast and 
that may also include a wrinkled, orange peel appearance of the skin, defi ned as 
“peau d’orange” [ 1 ,  5 ,  6 ]. The changes in the skin of the involved breast of IBC 
patients are the fi rst clinical signs of IBC and are due to the presence of tumor 
emboli lodged within dermal lymphatic vessels, which is one of the classical histo-
pathological fi ndings in IBC [ 7 – 9 ]. While their presence is not a requirement for a 
diagnosis of IBC, approximately 75 % of IBC patients have tumor emboli, and they 
serve as one of most distinctive characteristics of IBC. 

 Research to elucidate the molecular mechanisms that underlie the rapid metasta-
sis exhibited by IBC has been hampered by the relatively rarity of the disease and an 
associated lack of preclinical models that recapitulate the human disease. This chap-
ter describes the characteristics of all of the available preclinical models of IBC, 
including two new models that we have developed using cells derived from IBC 
patients that we have designated as FC-IBC01 and FC-IBC02. We describe the use 
of these preclinical IBC models to validate the cancer stem cell phenotype that is a 
characteristic of IBC. This chapter also describes gene profi ling studies that have 
elucidated genomic signatures of IBC which provide insight into the molecular basis 
for the aggressive metastasis that characterize this lethal variant of breast cancer.  
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14.2     Characteristics of Preclinical Models of IBC 

 As with non-IBC breast cancers, IBC tumors can be categorized into intrinsic sub-
types including luminal A, luminal B, ErbB2/Her-2 + , and triple-negative breast can-
cers which lack ER/PR and ERBB2/Her-2. Although IBC tumors can be of any 
subtype, the predominant molecular subtypes are either triple-negative or ERBB2 +  
tumors [ 10 – 13 ], which is also refl ected in the preclinical models of IBC. 

 There are currently seven preclinical models of IBC, which include SUM149, 
SUM190, KPL-4, MDA-IBC-3, Mary-X, and two newly developed models, 
FC-IBC01 and FC-IBC02. Of these preclinical models, four of these are classifi ed 
as triple negative based on their lack of expression of ER, PR, and the ErBB2/Her-2 
oncogene. The triple-negative IBC models include the most well-characterized IBC 
cell line, SUM149, as well as Mary-X, FC-IBC01, and FC-IBC02. The remaining 
IBC models, SUM190, MDA-IBC-3, and KPL-4 cell lines, all express the Her-2 
oncogene. The prevalence of triple negative and Her-2 +  in preclinical IBC models 
mirrors the prevalence of these subtypes in the tumors of IBC patients. The heat 
map of the levels of expression of genes used to subtype breast cancers, including 
estrogen receptor (ER), progesterone receptor (PR), and the Her-2/ERBB2 onco-
gene, in preclinical models of IBC is shown in Fig.  14.1 .

   Using an expanded database of IBC patient tumors, recent studies reported that 
IBC patients with luminal A subtype (ER + /PR + /Her-2 − ) have shorter, distant-
metastases- free survival intervals compared with their non-luminal IBC counter-
parts [ 10 ]. This is in direct contrast to observations in non-IBC breast cancers, in 
which patients with luminal A tumors have improved survival compared to all other 
subtypes of breast cancer [ 14 ]. The preclinical models of IBC are either triple 

  Fig. 14.1    Heat map of IBC 
breast cancer cell lines 
showing the expression of 
ER, PR, Her-2, and EGFR 
(This fi gure was originally 
published in J Clin Exp 
Pathol. 2012;2:119. doi:
  10.4172/2161- 0681.1000119    )       
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negative or Her-2 amplifi ed, which is refl ective of the most prevalent subtypes of 
this variant of breast cancer. The observation that the worst prognosis is associated 
with those with a luminal A subtype of IBC underscores the need for further devel-
opment of preclinical models of IBC, which will be critical to defi ne the molecular 
basis for the observation of this differential lower overall survival of patients with 
luminal A subtype IBC. 

14.2.1     Characteristics of Triple-Negative Preclinical 
Models of IBC 

 The Mary-X IBC model is a stable transplantable xenograft model developed by Dr. 
Sanford H. Barsky from the primary tumor of an IBC patient with triple-negative 
basal-like breast cancer [ 15 – 17 ]. Prior to 2011, Mary-X was the only preclinical 
model of IBC that recapitulated the formation of tumor emboli and encircling lym-
phatic vessels that commonly occurs in IBC patients. Mary-X grows as xenografts 
that appear red and highly vascularized (Fig.  14.2a ). Examination of tumor tissues 
isolated from mice bearing Mary-X reveals the presence of multiple tumor emboli 
within the dermis (Fig.  14.2b , inset, and c), and metastasis readily occurs, primarily 
in lung (Fig.  14.2d ). Mary-X tumors and tumor emboli that invade into the dermal 
layer of the skin (Fig.  14.2e, f ) and metastatic lesions in lung (Fig.  14.2g–i ) have very 
robust expression of the surface glycoprotein, E-cadherin. Mary-X tumor cells can 
only be optimally propagated as 3-dimensional tumor spheroids (Fig.  14.2j, k ) and 
have not been successfully maintained as 2-dimensional adherent cultures on plastic. 
Mary-X tumor spheroids retain expression of E-cadherin (Fig.  14.2l ). Our gene pro-
fi ling studies identifi ed only a ten gene difference between Mary-X tumor emboli 
isolated by laser capture microdissection, and Mary-X tumor spheroids [ 18 ], sug-
gesting that the Mary-X tumor spheroids provide a convenient in vitro model with 
which to study characteristics of tumor emboli as well as a method to determine the 
ability of therapeutic agents to target tumor spheroids as surrogates of tumor emboli.

   In addition to the Mary-X preclinical model of IBC, we have developed two new 
models of IBC, designated as FC-IBC01 and FC-IBC02, derived from tumor cells 
isolated following thoracentesis of IBC patients who had developed metastatic pleu-
ral effusions [ 19 ,  20 ]. As was observed with Mary-X cells, FC-IBC01 and FC-IBC02 
cells spontaneously form 3-dimensional tumor spheroids in vitro and are optimally 
propagated for short periods of time in low-adherence culture. When FC-IBC01 and 

Fig. 14.2 (continued) layer of the skin. ( d ) Mary-X tumor cells form lung metastasis visible as tumor 
emboli. ( e ) Tumor tissue isolated from Mary-X has robust expression of E-cadherin protein present in 
tumor emboli in the dermis ( f ) and in the lungs ( g – i ). ( j ) and ( k ) Mary-X tumor cells isolated from 
tumor xenografts spontaneously form 3-dimensional tumor spheroids when placed into low-adher-
ence culture conditions. ( l ) Tumor spheroids in culture retain robust expression of E-cadherin (This 
fi gure was originally published in J Clin Exp Pathol. 2012;2:119. doi:  10.4172/2161-0681.1000119    )         
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  Fig. 14.2    Histological characteristics of Mary-X preclinical model of IBC. ( a ) Mary-X tumor xeno-
graft grows as large tumor with visible vascularization. ( b ) Light micrograph of H&E-stained tumor 
tissue isolated from Mary-X.  Insets  show the presence of tumor emboli in the dermis. ( c ) Higher 
magnifi cation of Mary-X tumor tissue which contains numerous tumor emboli within the dermal 
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FC-IBC02 tumor cells are injected into immunocompromised mice, tumors develop 
within 2–3 weeks, with the formation of IBC tumor emboli that invade into the skin 
and rapid metastasis to multiple sites [ 19 ,  20 ]. Mary-X, FC-IBC01, and FC-IBC02 
tumor cells form tumor emboli that express E-cadherin protein (green fl uorescence) 
that are encircled by lymphatic vessels that express podoplanin, used as a selective 
marker of lymphatic endothelium (red fl uorescence) (Fig.  14.3a–c , respectively). 
Topro-3 was used as a marker of nuclear DNA (blue fl uorescence).

   The SUM149 cell line was developed in the laboratory of Dr.    Stephe Ethier    and 
colleagues [ 21 ,  22 ]  , and has been used for the vast majority of IBC studies. SUM149 
cells were developed from a patient with invasive ductal carcinoma prior to receiv-
ing chemotherapy. As shown in Fig.  14.1 , SUM149 cells are classifi ed as triple- 
negative subtype based on the lack of ER, PR, and the Her-2 oncogene. Note that all 
of the triple-negative IBC cell lines, including SUM149, express EGFR. SUM149 
cells do not form tumor emboli when grown as xenografts in immunocompromised 
mice in vivo; however, these cells do rapidly form primary tumors as well as com-
monly form metastatic lesions at multiple sites, including bone (Fig.  14.4a, b ), lung 
(Fig.  14.4c ), lymph nodes, liver, and soft tissues when injected via the intracardiac 
injection route into immunocompromised mice.

14.2.2        Characteristics of Her-2 Expressing Preclinical Models 
of IBC 

 The SUM190 IBC cell line was also developed from a patient with invasive ductal 
carcinoma prior to receiving chemotherapy [ 21 ], has amplifi ed Her-2 [ 21 ,  22 ], and 
proliferates at a much slower rate compared with SUM149 cells, with a doubling 
time of ~42 h. However, when SUM190 cells are cultured under low-adherence 

  Fig. 14.3    ( a )–( c ) Triple-color immunofl uorescence and fl uorescence microscopy identifi ed tumor 
emboli in tissues isolated from xenografts of Mary-X ( a ), FC-IBC01 ( b ), and FC-IBC02 ( c ) that 
express E-cadherin protein ( green fl uorescence ) that are encircled by lymphatic vessels that selec-
tively express podoplanin ( red fl uorescence ). Topro-3 was used to identify nuclear DNA, shown as 
 blue fl uorescence  (This fi gure was originally published in J Clin Exp Pathol. 2012;2:119. 
doi:  10.4172/2161-0681.1000119    )       
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conditions which supports formation of tumor spheroids and then injected into 
immunocompromised mice, SUM190 produces primary tumors as well as meta-
static lesions, primarily to the lung but this occurs less frequently (Fig.  14.4c ). 

 KPL-4 is an additional IBC cell line derived from tumor cells isolated from pleural 
effusion of a patient with infl ammatory skin metastasis [ 22 ]. KPL-4 cells have 15-fold 
amplifi cation of Her-2. When grown as xenografts, KPL-4 cells induced cachexia, 
which is associated with production of interleukin-6 (IL-6) [ 23 – 25 ], leading to the 
use of this model to examine the effects of therapeutic agents that block IL-6 produc-
tion [ 23 – 25 ]. More recently, the KPL-4 model has been used to demonstrate the ben-
efi t of combining trastuzumab (Herceptin ® ; Genentech, South San Francisco, CA) 
with fl uoropyrimidines or a taxane in circumstances where trastuzumab resistance 
has developed [ 26 ,  27 ]. Due to the very high passage number of KPL-4, this cell line 
is less commonly used in studies to identify the molecular basis of IBC. 

 MDA-IBC-3 cells were developed from an IBC patient with pleural effusion by 
serial transplantation [ 28 ]. MDA-IBC-3 cells express Her-2, and although they have 
a very slow doubling time (~76 h) when cultured as adherent cultures on plastic sub-
strates, they readily form tumor spheroids when placed in low-adherence conditions 
and grow as xenografts when injected into immunocompromised mice. In our hands, 
MDA-IBC-3 cells form primary tumors but very rarely form metastatic lung tumors 
(Fig.  14.4c ); however, they do not form tumor emboli when grown as xenografts.   

  Fig. 14.4    Identifi cation of sites of metastasis in SUM149, SUM190, and MDA-IBC-3 preclinical 
xenograft models of IBC. ( a ) and ( b ) Luciferase-based images of the presence of metastatic lesions 
detected at 21–60 days following injection of SUM149 cells (5 × 10 6 ) tagged with a luciferase 
bioluminescent tag into mammary fat pads of NOD. Cg-Prkdc scid  Il2rg tm1Wjl /SzJ mice, identifying 
multiple sites of metastasis of SUM149 to scapula, humerus, tibia, and pelvis. ( c ) Images of the 
presence of lung metastasis following injection of SUM149, SUM190, MDA-IBC-3, and 
MDA-MB-231 cells that were tagged with a luciferase bioluminescent tag, detected by biolumi-
nescent signal in cells within isolated lungs (This fi gure was originally published in J Clin Exp 
Pathol. 2012;2:119. doi:   10.4172/2161-0681.1000119    )       
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14.3     IBC Is Enriched for Cells with a Cancer Stem Cell 
Phenotype 

 Studies using the Mary-X preclinical model of IBC made the initial seminal obser-
vation that 3-dimensional tumor spheroids derived from Mary-X tumor tissue have 
characteristics in common with embryonal blastocysts including expression of tran-
scription factors OCT-4, NANOG, and SOX-2, which are all associated with stem 
cell self-renewal and embryonic pluripotency, as well as addiction to NOTCH3 [ 29 ]. 
Mary-X spheroids were also shown to express markers of cancer stem cells charac-
terized by the presence of CD44 + /CD24 −/low  and the presence of cells positive for 
aldehyde dehydrogenase-1 activity (ALDH1) and that express CD133. Additional 
evidence offered in support of IBC being enriched for cells with a cancer stem cell 
phenotype came from the demonstration that Mary-X tumor cells expressed genes 
within stem cell signaling pathways such as NOTCH3 and as few as 100 Mary-X 
tumor cells could recapitulate the IBC phenotype of tumor emboli formation within 
the skin. This study also reported that the stem cell phenotype exhibited by Mary-X 
was also exhibited by the lymphovascular emboli of human IBC cases regardless of 
the molecular subtype of the tumor, which was the fi rst indication that IBC may be 
a tumor type enriched for cells with a stem cell phenotype [ 29 ]. Following these 
studies in the Mary-X preclinical model of IBC, Charafe-Jauffret et al. demonstrated 
that IBC is enriched for cells with a cancer stem cell phenotype based on detection 
of ALDH1 positive cells [ 30 ], which supports the clinical observation that IBC is a 
disease characterized by resistance to chemotherapy, early disease recurrence, 
metastasis, and poor clinical outcomes [ 31 ]. Our studies were the fi rst to describe 
the bipotency of IBC tumor cells and also illustrated the self-renewal potential of 
these IBC tumor cells [ 32 ].    The results of our analysis of preclinical models of IBC 
revealed the presence of cancer stem cell marker CD44, which is expressed primarily 
by the triple-negative IBC models (Fig.  14.5a, b ) and expression of CD133 by 
Mary-X and FC-IBC02 models of IBC (Fig.  14.5c ) [ 32 ,  33 ]. These studies demon-
strate that the triple-negative models of IBC are highly enriched for cells with a 
cancer stem cell phenotype compared to the Her-2 +  models of IBC. We are currently 
using these preclinical models of IBC to defi ne the effectiveness of agents that 
may target cancer stem cells, with the goal of moving the best candidates into 
clinical trials.

   The expression of cancer stem cell markers coincides with the metastatic capa-
bilities of the preclinical models of IBC. Each of the seven preclinical IBC cell 
systems grows as orthotopic tumors when implanted into the mammary fat pad and 
grows as xenografts when injected into the hind fl ank, with robust tumor emboli 
formation in the dermal lymphatics by Mary-X, FC-IBC01, and FC-IBC02 
(Fig.  14.3 ) [ 33 ], which we did not observe in the other preclinical IBC cell systems. 
Additionally, we have found that all of the preclinical models of IBC form meta-
static lesions at multiple sites (Fig.  14.4a–c ).  
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  Fig. 14.5    Flow cytometric detection of cancer stem cell surface markers. ( a ,  b ) Flow cytometric 
detection of CD44/CD24 expressed by ( a ) SUM149, Mary-X, FC-IBC01, and FC-IBC02 cells and 
( b ) SUM190 and MDA-IBC-3 cells. ( c ) Flow cytometric detection of CD133 expression by 
Mary-X and FC-IBC02 cells (This fi gure was originally published in J Clin Exp Pathol. 2012;2:119. 
doi:   10.4172/2161-0681.1000119    )       
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14.4     Gene Signatures of IBC 

 As we have described above, the primary pathological hallmark of IBC is the 
 presence of tumor emboli, which are multicellular aggregates of cells that invade 
into the dermal lymphatics and retain an epithelial phenotype, characterized by 
expression of E-cadherin (Figs.  14.2  and  14.3 ) [ 7 – 9 ,  15 ,  18 ,  33 ,  34 ]. With the goal 
of identifying other genes that may be associated with E-cadherin, we evaluated 
expression of genes involved in cell–cell aggregation and the adherens junctions. 
Based on whole unbiased transcriptional analysis of preclinical models of IBC, we 
validated the expression of  CDH1 , which encodes for E-cadherin with the exception 
of KPL-4 cells. We found that E-cadherin expression coincided with the expression 
by IBC tumor models of a cassette of genes including gamma (γ) catenin/ JUP , 
p120/delta (δ) catenin, and  DSC2    (Fig.  14.6a ). Collectively, these genes regulate the 
tight homotypic aggregation of tumor cells, forming adherens junctions [ 35 ,  36 ], 
such as occurs in the cell aggregates that comprise IBC tumor emboli [ 33 ,  34 ]. 
Figure  14.6b  shows the Western blot results of studies evaluating the presence of 
E-cadherin, DSC2, γ-catenin/JUP, and p120/δ  catenin proteins in all of the preclini-
cal models of IBC.

   The observation that E-cadherin is retained in IBC cells is, at fi rst glance, para-
doxical to the current hypothesis that invasion and metastasis occurs with the loss of 
E-cadherin, as part of the process of the epithelial-mesenchymal transition (EMT) 
[ 37 ,  38 ]. The loss of E-cadherin during EMT favors a mesenchymal motile pheno-
type that is associated with acquisition of characteristics of cancer stem cells regu-
lated by transcription factors such as  TWIST1  [ 39 ]. In contrast, previous studies in 
models of IBC using dominant negative molecular approaches or neutralizing anti-
bodies demonstrated that inhibiting the function of E-cadherin effectively blocked 
the invasion and survival of IBC tumor cells in vitro [ 15 ] and diminished the integ-
rity of tumor emboli in vivo [ 15 ,  40 ]. Although E-cadherin has been demonstrated 
to be necessary for survival of IBC tumor cells, little is known about the transcrip-
tional program that supports the retention of E-cadherin while exhibiting a program 
of accelerated metastasis. 

 We performed gene profi ling to evaluate the genes associated with the process of 
EMT that were expressed by preclinical models of IBC (Fig.  14.7a ). We found that 
the expression of CDH1, which encodes for E-cadherin, was accompanied by a loss 
of the zinc fi nger E-box binding homeobox gene,  ZEB1 , a transcriptional repressor 
of  CDH1  (Fig.  14.6a ), which we validated by Western blot analysis (Fig.  14.7b ). In 
contrast, the preclinical models of IBC expressed transcription factors  SNAI1  and 
 SNAI2  and  TWIST1  (Fig.  14.7a ) that are known to be involved in maintenance of a 
stem cell phenotype [ 33 ]. To validate the loss of ZEB1 in IBC, we used laser capture 
microdissection techniques to specifi cally isolate IBC patient tumor emboli from 
six samples of IBC core biopsies and four samples taken from skin punch biopsies 
and also performed laser capture microdissection of tumor emboli taken from the 
Mary-X preclinical model of IBC. These studies demonstrated the loss of  ZEB1  in 
tumor emboli and in primary tumor biopsy tissues, which was mirrored by the loss 
of  ZEB1  in IBC cell lines (Fig.  14.6c , Table  14.1 ).

F.M. Robertson et al.



315

     Taken together, the gene signature and phenotypic characteristics that we have 
defi ned suggest that IBC exhibits characteristics of epithelial plasticity, where the 
tumor cells retain an epithelial phenotype through E-cadherin expression, while 
simultaneously expressing markers consistent with cells with a cancer stem cell 
phenotype and the associated expression of the transcription factors  TWIST1 , 
 SNAI1 , and  SNAI2 . The triple-negative IBC cells also express  VIM , which encodes 
for vimentin, usually associated with the process of EMT. 

 While the process of EMT has become an accepted dogma, there is currently a 
controversy about how necessary this process is to invasion and metastasis, with 
very few examples of EMT identifi ed in human tumor specimens. Recent studies 
suggest that EMT is not required for metastatic spread, but more often the cells 
express cancer stem cell markers regulated by transcription factors while maintain-
ing an epithelial phenotype [ 41 ]. These observations are consistent with our result 

  Fig. 14.6    Analysis of genes and proteins associated with cell–cell aggregation in preclinical mod-
els of IBC. ( a ) Heat map showing expression of genes involved in cell–cell aggregation in preclini-
cal models of IBC. ( b ) Western    blot analysis of proteins involved in cell–cell aggregation in 
preclinical models of IBC (This fi gure was originally published in J Clin Exp Pathol. 2012;2:119. 
doi:   10.4172/2161-0681.1000119    )       
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demonstrating simultaneous robust expression of E-cadherin and other genes asso-
ciated with tight homotypic aggregation while maintaining a stem cell phenotype 
associated with the expression of transcription factors that is involved in mainte-
nance of the stem cell characteristics [ 33 ,  34 ].  

  Fig. 14.7    Analysis of EMT-associated genes and proteins in preclinical models of IBC. ( a ) Heat 
map showing expression of genes involved in EMT in preclinical models of IBC. ( b ) Western blot 
analysis of ZEB1 and vimentin proteins in preclinical models of IBC compared with non-IBC 
breast tumor cell lines. ( c ) Gene expression of  ZEB1  in IBC tumor cells, non-IBC tumor cells, and 
tissue from primary tumor biopsy obtained from six IBC patients isolated by laser capture micro-
dissection and in tissues isolated from tumor emboli isolated from skin punch biopsies of four IBC 
patients isolated by laser capture microdissection (This fi gure was originally published in J Clin 
Exp Pathol. 2012;2:119. doi:   10.4172/2161-0681.1000119    )       

   Table 14.1    Statistical 
analysis of the comparative 
differences in  ZEB1  gene 
expression from cells and 
IBC patient tissues from 
studies shown in Fig.  14.7 

  

Non- IBC
Cells

vs vs vs vs

IBC Cells

P<0.0007

IBC Cells IBC Cells IBC CORE

IBC CORE IBC EMBOLI IBC EMBOLI

P<0.004 N.S. N.S.     

   Table was originally published in J Clin Exp Pathol. 2012; 

2:119. doi:   10.4172/2161-0681.1000119      
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14.5     IBC Characterized by Loss of TGFβ Signaling in IBC 

 One of the growth factors known to induce the process of EMT is transforming 
growth factor-beta (TGFβ) [ 42 ]. Recent studies demonstrated that TGFβ is a key fac-
tor in the reversible regulation of motility by single cells, which in its absence, allows 
cells to revert to a process that has been defi ned as “cohesive invasion” [ 43 ]. Our gene 
profi ling studies demonstrated that, in addition to retention of E-cadherin, preclinical 
models of IBC have a loss of expression of genes involved in TGFβ signaling 
(Fig.  14.7 , Table  14.2 ), which is consistent with our collaborative studies reporting 
similar changes in IBC patient tumor tissues [ 10 ]. Since IBC tumor cells are charac-
terized by formation of highly motile aggregates of tumor cells that migrate and 
invade into the dermis as a collective unit, it is perhaps not surprising that IBC is 
characterized by a loss of genes within the TGFβ signaling pathway and gain of 
genes such as SMAD6 and RUNX3 (Table  14.2 ), which suppress the process of EMT 
induced by TGFβ. The simultaneous retention of an epithelial phenotype with a lack 
of TGFβ signaling activation in IBC may be the molecular basis for the ability of 
aggregates of tumor cells to migrate into lymphatic vessels, as we have demonstrated 
occurs in the Mary-X, FC-IBC01, and FC-IBC02 preclinical models of IBC [ 19 ,  20 , 
 33 ] and as has been demonstrated in IBC patient skin punch biopsy tissues [ 1 ,  7 – 9 ].

    Table 14.2    List of genes showing the relative difference in expression of genes within the TGFβ 
signaling pathway in preclinical models of IBC   

 Symbol  Gene name  Fold changes 

 INHBA  Inhibin, beta A  1.2581344902386116 
 BMPR1B  Bone morphogenetic protein receptor, type IB  1.2714285714285716 
 VDR  Vitamin D (1,25- dihydroxyvitamin D3) receptor  1.292483660130719 
 TGIF  TGFB-induced factor homeobox 1  1.2964509394572026 
 MAPK13  Mitogen-activated protein kinase 13  1.3747680890538034 
 TLX2  T-cell leukemia homeobox 2  1.3917525773195878 
 MAP2K6  Mitogen-activated protein kinase kinase 6  1.4218749999999998 
 Smad6  SMAD family member 6  1.5411764705882354 
 MAPK11  Mitogen-activated protein kinase 11  1.6130952380952381 
 Runx3  Runt-related transcription factor 3  2.760330578512397 
 PAI-1  Serpin peptidase inhibitor, clade E  −3.0973451327433628 
 GSC  Goosecoid homeobox  −3.021276595744681 
 Bcl-2  B-cell CLL/lymphoma 2  −2.1538461538461537 
 MAPK12  Mitogen-activated protein kinase 12  −1.7128712871287128 
 Runx2  Runt-related transcription factor 2  −1.5742753623188408 
 TGFB1  transforming growth factor, beta 1  −1.5596868884540114 
 AMHR2  Anti-Mullerian hormone receptor, type II  −1.5166666666666666 
 Nkx2.5  NK2 homeobox 5  −1.5108225108225108 
 TCF  Hepatocyte nuclear factor 4, alpha  −1.5104895104895106 
 BMP2K  BMP2 inducible kinase  −1.4548872180451127 

  Table was originally published in J Clin Exp Pathol. 2012;2:119. doi:   10.4172/2161-0681.1000119       
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   Interestingly, the same study reporting the loss of TGFβ signaling as permissive 
for cohesive invasion demonstrated that tumor cells exhibiting collective invasion 
due to a lack of TGFβ signaling invaded into lymphatic vessels but were incapable of 
hematogenous metastasis [ 43 ]. This is the pattern of metastatic spread exhibited in 
IBC, which favors lymphatic dissemination leading to locoregional recurrence prior 
to the occurrence of systemic metastasis. Collectively, the results of our gene profi l-
ing studies are consistent with observations that IBC tumor emboli primarily invade 
into dermal lymphatic vessels, providing a route of metastasis to local lymph nodes, 
which is the pattern of disease progression that is commonly observed in IBC patients. 
Our studies suggest that IBC tumor cells display plasticity in their gene signature that 
allows them to retain the epithelial phenotype, while modulating specifi c signaling 
pathways that program them to a specifi c lymphatic route of metastasis. Based on the 
high degree of plasticity exhibited in IBC tumor cells, it may be that they are capable 
of expressing genes within different signaling pathways, depending upon whether 
they display a propensity for a lymphatic or blood-borne route of metastasis. 

 While loss of E-cadherin has been associated with the phenotypic program of EMT 
characterized by increased motility and invasion similar to that of fi broblasts [ 37 ,  38 ], 
the ability to revert from a mesenchymal phenotype back to an epithelial phenotype is 
now believed to be necessary for colonization to form distant metastasis. Using the 
triple-negative breast cancer cell line MDA-MB-231, one study demonstrated that the 
microenvironment of the lung induced reexpression of E-cadherin associated with 
what was defi ned as mesenchymal-to-epithelial reverting transition (MErT) [ 44 ]. This 
phenotypic change of the MDA-MB-231 cells, which usually have a mesenchymal 
cell phenotype, was associated with altered cell behavior and was critical to their sur-
vival at the sites of metastasis. A recent review pointed out that there are a number of 
tumor types including IBC, ovarian carcinoma, and glioblastoma, which all exhibit an 
accelerated program of metastasis and are characterized by retention of E-cadherin 
and exhibiting cohesive invasion. These studies suggested that the role of E-cadherin 
in metastasis may be currently unappreciated [ 45 ]. 

 Thus, the apparent dichotomy of the gene signatures of IBC that includes expres-
sion of transcription factors involved in maintenance of a stem cell phenotype while 
retaining an epithelial phenotype may be explained by the extreme plasticity exhib-
ited by IBC tumor cells as one of their adaptive mechanisms for survival and accel-
erated rates of metastasis to multiple sites. We have identifi ed the lack of  ZEB1  
expression and the loss of genes involved in the TGFβ signaling pathway that induce 
EMT, with expression of genes that suppress TGFβ−mediated EMT to be character-
istic of all of the preclinical models of IBC. Additionally, the lack of  ZEB 1 expres-
sion, a known transcriptional repressor of E-cadherin, may be the molecular basis 
for the retention of robust E-cadherin expression in IBC, which we have previously 
demonstrated to be associated with the presence of microRNA 200c, which regu-
lates E-cadherin expression [ 34 ]. Additionally, our gene profi ling studies also dem-
onstrated that preclinical models of IBC express a specifi c repertoire of transcription 
factors, including Snail and  TWIST1 , that allows maintenance of a cancer stem cell 
phenotype, which may confer a survival advantage in the face of chemotherapy and 
radiation as well as conferring a tumor initiating capability [ 33 ,  34 ].  

F.M. Robertson et al.



319

14.6     Conclusions 

 Taken together, the simultaneous expression of genes in IBC that support an epithe-
lial phenotype with suppression of expression of genes associated with a mesenchy-
mal phenotype such as  ZEB1  and TGFβ allows IBC tumor emboli to migrate as 
aggregates of cells into lymphatic vessels, providing a conduit for IBC tumor emboli 
to rapidly colonize regional lymph nodes. This program of simultaneous gain and 
loss of specifi c gene programs may be the basis for the metastatic phenotype exhib-
ited in IBC patient, which is recapitulated in preclinical models of IBC, especially 
those that are triple negative and can be accurately characterized by a high degree 
of epithelial plasticity. 

 Collectively, our studies are among the fi rst to identify that retention of E-cadherin 
expression in preclinical models of IBC was associated with the suppression of 
genes within the TGFβ signaling pathway and lack of or low expression of the  ZEB1  
transcription factor that are both known to be involved in the process of EMT 
(Fig.  14.8 ). These results are among the fi rst to shed light on molecular mechanisms 
underlying the retention of E-cadherin observed in IBC patient tumors and on a 
signaling pathway that supports the retention of an epithelial phenotype, in the face 
of enrichment of cells with a cancer stem cell phenotype and a program of 

  Fig. 14.8    Pathway map of genes within the TGFβ signaling pathway in preclinical models of IBC, 
with upregulated genes shown in  red  and downregulated genes shown in  green  (This fi gure was 
originally published in J Clin Exp Pathol 2:119. doi:   10.4172/2161-0681.1000119    )       
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accelerated metastasis that is consistent with the disease in a patient with an IBC 
diagnosis. The observations for the suppression of expression of genes within the 
TGFβ signaling pathway are consistent with results of gene profi ling of IBC patient 
tumors [ 11 ]. Collectively, these data provide fi rst-time evidence that IBC is charac-
terized by a signature of epithelial plasticity with enrichment for cancer stem cells, 
similar to the observations made in collaborative studies in IBC patient tumors.     
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    Abstract     Experimental examination of the agents and processes that may propel or 
prevent human breast carcinogenesis can be facilitated by in vitro model systems of 
transformation, starting with normal cells, that accurately refl ect the in vivo biology. 
Model systems that can replicate the types of alterations seen during in vivo pro-
gression offer the potential to understand the mechanisms underlying progression 
and to examine possible means of individualized prevention and treatment. To this 
end, we have developed an experimentally tractable human mammary epithelial cell 
(HMEC) culture system that has been used to examine the normal processes gov-
erning HMEC growth, differentiation, aging, and senescence and how these normal 
processes are altered during immortal and malignant transformation. Isogenic cells 
at different stages of multistep carcinogenesis were generated by exposing normal 
fi nite lifespan HMEC to a variety of oncogenic agents that may play an etiologic 
role in breast cancer. Examination of the molecular alterations present at each stage 
has indicated that this model is consistent with observed multistep carcinogenesis in 
vivo. We have seen that varying target cell type, and oncogenic agents used, can 
lead to multiple distinct molecular pathways of transformation, although the full 
diversity of human breast cancer cell types has not yet been generated in culture 
models. Using this integrated system, we have formulated a comprehensive model 
of the proliferative barriers normal HMEC must overcome to gain immortality and 
malignancy. Our data provide insights on acquisition of cancer-associated proper-
ties and suggest that the most crucial step in breast cancer progression involves the 
transition from a fi nite to an indefi nite lifespan. For example, we see that genomic 
instability originates in fi nite lifespan HMEC when telomeres become critically 
short and engage in telomeric associations and is then maintained in resultant 
immortalized and malignant lines. Direct genomic targeting of the tumor- suppressive 
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senescence barriers can produce lines lacking gross genomic errors, supporting the 
hypothesis that genomic instability is a mechanism to generate cancer-causing 
errors, but is not necessary per se. Immortalization through telomerase reactivation 
was also associated with acquisition of resistance to TGFβ growth inhibition and to 
oncogene-induced senescence (OIS) and with large-scale changes in gene expres-
sion and epigenetic marks. Being able to examine the progressive changes that fuel 
malignancy, starting with normal cells, provides an integrated perspective that can 
reveal novel information on the origins and consequences of individual cancer- 
associated aberrations.  

15.1         Introduction 

 Human breast carcinomas exhibit great diversity in phenotypic expression, corre-
lated with differences in clinical parameters [ 1 – 4 ]. The factors that contribute to 
transforming normal breast cells to cancer, and give rise to the observed diversity of 
breast cancer subtypes, are currently not well defi ned. The interplay between initial 
target cell, genomic alterations that overcome tumor-suppressive barriers and confer 
malignancy, and cell–stromal interaction is thought to be the main variable that 
infl uence the transition of normal cells to the different malignant phenotypes. 

 A wealth of recent information derived from direct examination of human breast 
tissues is providing new insights about the pathways and alterations associated with 
breast carcinogenesis and the extent of inter- and intra-tumor heterogeneity [ 5 – 9 ]. 
However, determining cause and effect relationships about factors and aberrations 
that may propel or halt human breast carcinogenesis is constrained by the limita-
tions of in vivo human analyses. The use of animal model systems as in vivo models 
of human breast cancer also has limitations. Many signifi cant differences in pro-
cesses implicated in aging and carcinogenesis exist between human cells and cells 
derived from commonly used rodent model systems, for example, in regulation of 
telomerase activity and immortalization [ 10 ] and in the roles of the cyclin- dependent 
kinase inhibitors (CKI) p16 INK4a  and p14 ARF  [ 11 ]. Similarly, many signifi cant differ-
ences in biological processes exist between epithelial and mesenchymal cells, for 
example, responses to chemical carcinogens and TGFβ, mechanisms of senescence, 
and expression of miRNAs [ 12 – 17 ]. Since the large majority of human cancers 
derive from epithelial cells, we believed that a full understanding of human carcino-
genesis would require the ability to examine human epithelial cells in culture. 
Further, in order to understand deranged human cellular processes, we believed it 
would be necessary to have normal cells available for comparison. We therefore 
developed an experimentally tractable human mammary epithelial cell (HMEC) 
culture system that supports vigorous growth of normal HMEC of multiple lineages 
and has generated isogenic cultures that range from normal, to aberrant but still 
fi nite, to nonmalignant immortal, and to malignant immortal. Our extensive inte-
grated system allows examination of the progressive changes that fuel malignancy, 
starting with normal cells, thereby providing a comprehensive perspective that can 
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offer insight on the origins, consequences, and interactions of individual cancer-
associated aberrations. This in vitro system can also complement in vivo fi ndings by 
supporting experimental evaluation of factors that may promote or inhibit malig-
nancy at different stages in progression. 

 This review will describe the HMEC culture system we have developed and how 
it has been employed to gain an integrated overview of the central processes associ-
ated with human breast carcinoma development. To place the various cell cultures 
generated within the context of multistep carcinogenesis, we fi rst review our model 
of the tumor-suppressive senescence barriers that need to be bypassed or overcome 
for malignant progression in cultured HMEC to proceed.  

15.2     Senescence Barriers Encountered by Cultured HMEC 

 Based on our studies of normal HMEC grown under different culture conditions and 
exposed to various oncogenic agents (see below), we have generated a new model 
of the tumor-suppressive senescence barriers that prevent normal cells from becom-
ing immortally and malignantly transformed [ 15 ,  18 ]. Figure  15.1  outlines the gen-
eration of our various cultures with respect to growth medium, oncogenic agents 
employed, and the senescence barriers, and Table  15.1  compares the phenotypes of 
HMEC and isogenic human mammary fi broblasts (HMF) arrested at distinct senes-
cence barriers. We observe that cultured HMEC encounter at least two mechanisti-
cally distinct barriers to indefi nite proliferation, stasis (stress-associated senescence) 
and telomere dysfunction due to telomere attrition. Finite lifespan HMEC are also 
vulnerable to oncogene-induced senescence (OIS). Some HMEC may cease growth 
as a consequence of terminal differentiation. Importantly, the model presented here 
is consistent with observations of in vivo breast cancer progression. We also note 
that the phenotype of senescent isogenic HMF resembles that of HMEC at stasis 
rather than at telomere dysfunction (Table  15.1 ).

    Stasis is a stress-associated barrier mediated by the retinoblastoma (RB) path-
way and is independent of telomere length and extent of replication [ 15 ]. The onset 
of stasis in cultured HMEC correlates with increased expression of p16, which pre-
vents inactivation of RB [ 15 ,  18 – 20 ]. Cells at stasis express senescence-associated 
β-galactosidase (SA-βGal) activity and have a senescent morphology. The number 
of population doublings (PD) achieved prior to stasis varies with culture conditions; 
we have observed a range of ~10–60 PD [ 15 ,  18 ,  21 ,  22 ]. Molecular correlates that 
can identify stasis, in addition to p16 expression, include arrest in G1, low labeling 
index (LI), noncritically short telomeres, and normal karyotypes (Table  15.1 ) [ 15 , 
 18 ,  20 ]. These parameters are consistent with an RB-mediated arrest and the absence 
of a DNA damage response (DDR). Stasis can be bypassed or overcome in cultured 
HMEC by multiple types of individual alterations (genetic and/or epigenetic) in 
pathways governing RB and does not require loss of p53 function [ 19 ,  22 – 25 ]. 
Overcoming stasis may correlate with hyperplasia/atypical hyperplasia in vivo, 
which can display clonal growth. Errors in the RB pathway (e.g., loss of p16 
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  Fig. 15.1    Model of senescence barriers encountered by cultured HMEC and derivation of trans-
formed HMEC cultures. Primary cultures obtained from reduction mammoplasties (RM) or non- 
tumor mastectomy tissues (P) were initiated in three diff erent types of medium (panels a, b, c). All 
unperturbed cells grown in any serum-containing medium ceased proliferation at the stasis barrier 
(panels a, c). Exposure of pre-stasis cultures to various oncogenic insults ( red ) induced cells to 
overcome or bypass stasis and become post-stasis by different means. Further alterations were 
required to overcome the telomere dysfunction barrier, gain telomerase expression, and become 
immortal. Cells from post-selection post-stasis cultures all ceased proliferation at the telomere 
dysfunction barrier in the absence of additional oncogenic exposures (panel b). Nonmalignant 
immortal lines were no longer sensitive to OIS, and transduction of a number of diff erent onco-
genes conferred AIG (anchorage-independent growth) and/or tumorigenicity       
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expression by mutation or epigenetic silencing, mutated RB, overexpressed cyclin 
D1, mutated cdk4) are common in human carcinomas [ 19 ,  26 – 29 ]. Gross genomic 
aberrations are not common at this stage in vivo [ 30 ] and are not associated with 
overcoming stasis in vitro [ 15 ,  20 ]. 

 Although neither cultured HMEC nor HMF express p21 at stasis, we postulate 
that stasis can also be enforced by p53-dependent p21 in response to DNA-damaging 
stresses such as oxidative damage or radiation. Other cell types, such as keratino-
cytes and foreskin fi broblasts, may be more vulnerable to DNA damage-inducing 
stresses in culture, express p21, and show greater evidence of a DDR at stasis. The 
presence of a DDR and telomeric damage foci in these cell types is not by itself 
evidence of senescence due to telomere erosion but can result from the decreased 
ability of telomeric ends to repair DNA damage [ 31 ]. HMEC in vivo may also expe-
rience p53-inducing stresses. This p53-dependent type of stasis arrest does not 
require critically short telomeres or genomic instability, and inactivation of p53 or 
p21 function may facilitate overcoming this barrier [ 32 – 34 ]. Reactivation of telom-
erase is neither necessary nor suffi cient to overcome stasis; however, ectopic over-
expression of hTERT prior to the onset of stasis in HMEC can bypass stasis and 
produce immortalization (Garbe and Stampfer, unpublished). 

 In post-stasis HMEC (cells that have bypassed or overcome stasis), ongoing rep-
lication in the absence of suffi cient telomerase activity produces progressively 
shortened telomeres. Telomere dysfunction due to telomere attrition (i.e., replica-
tive senescence) occurs when telomeres become critically short (mean TRF ≤ 5 kb), 
and uncapped telomeres elicit genomic instability and a DDR. Where wild-type p53 
is present, most cells can mount a viable p53-dependent arrest; this barrier has been 
termed agonescence [ 18 ,  20 ,  35 ]. Karyotypic analysis of HMEC at agonescence has 
shown that virtually all metaphases exhibit gross chromosomal abnormalities, pre-
dominantly telomere associations [ 20 ,  36 ]. This result indicates that the p53- 
dependent senescence arrest due to telomere attrition does not occur as soon as one 
uncapped telomere is present [ 37 ,  38 ]. When p53 is nonfunctional the cells cannot 
mount a viable arrest, and crisis-associated massive cell death occurs [ 18 ]. 
Agonescence can be distinguished from stasis in HMEC by the presence of criti-
cally short telomeres and genomic instability, higher LI (~15 %), arrest at all phases 
of the cell cycle, and presence of a DDR (Table  15.1 ). HMEC at agonescence as 
well as at stasis display a senescent morphology and SA-βGal, so these properties 
do not readily distinguish between these two molecularly distinct senescence barri-
ers. Crisis can be distinguished from agonescence by a higher LI (~40 %) and the 
absence of a viable arrest. Since most human epithelial and fi broblast cells induced 
to transform in culture had p53 function inactivated to overcome stasis (e.g., using 
viral oncogenes or inhibitors of p53 function), only crisis was observed in such 
cultures at the telomere dysfunction barrier. 

 The telomere dysfunction barrier can be overcome by the expression of suffi cient 
telomerase to maintain stable telomere lengths. Overcoming telomere dysfunction 
may correlate with DCIS in vivo, which commonly displays short telomeres, 
genomic instability, and telomerase reactivation [ 30 ,  39 – 43 ]. 
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 Cultured fi nite lifespan HMEC are additionally vulnerable to OIS, which pro-
duces rapid growth inhibition and death [ 14 ]. The mechanism underlying OIS in 
HMEC is not yet fully delineated but, unlike many rodent and fi broblast cells, does 
not require functional p16 or p53 [ 14 ,  16 ]. The molecular correlates of OIS in 
HMEC differ from those seen in cells at stasis or telomere dysfunction and are con-
sistent with a DDR (Table  15.1 ). HMEC that have attained immortality via reactiva-
tion of endogenous telomerase are no longer vulnerable to OIS and show gain of 
malignancy-associated properties when exposed to oncogenes such as Raf-1, Ras, 
or ErbB2 [ 14 ,  16 ,  44 ,  45 ]. HMEC immortalized by exogenous hTERT transduction 
retain some vulnerability to oncogene exposure [ 14 ,  46 ], but recent studies indicate 
that unlike fi nite HMEC they may maintain proliferative capacity [ 47 ]. Gaining 
resistance to OIS may be critical to acquiring malignant properties in vivo.  

15.3     Normal HMEC in Culture 

 Normal and aberrant human mammary cells can be readily obtained from surgical 
discard tissues (reduction mammoplasties, mastectomies, benign tumors) and milk 
fl uids. Most reduction mammoplasty material is from women in their late teens to 
early 30s, but tissues from older women are also available. These tissues show the 
range of age-appropriate pathologies, with increasing presence of mild to atypical 
hyperplasia with age. From mastectomies, non-tumor tissues are available that can 
provide material from older women. Peripheral mastectomy tissue is not assumed to 
be normal, as there may be microtumors within the tissue or fi eld effects from the 
tumor or environmental exposures; similarly, tissues obtained from contralateral or 
prophylactic mastectomies are not considered normal. Milk fl uids are valuable as a 
source of functionally differentiated cells. Our early studies developed methods to 
separate the epithelial cells from the bulk surgical tissues [ 48 ]. Epithelial organoids, 
free of surrounding mesenchymal tissue, were purifi ed by enzymatic digestion, col-
lected on fi lters, and stored frozen [ 48 ,  49 ]. The digestion process also yielded a 
single cell population in the fi ltrate from which isogenic HMF could be obtained for 
culture and comparison to the HMEC. Our HMEC Bank contains frozen organoids 
from ~300 individuals ranging in age from 11 to 91. 

15.3.1     Pre-stasis Finite Lifespan HMEC 

 We have grown HMEC derived from reduction mammoplasties, milk, benign 
tumors, and non-tumor mastectomy tissues in three different types of media: serum- 
containing (MM and M85/M87A) or serum-free [MCDB 170 (commercial MEGM)] 
[ 15 ,  21 ,  22 ,  48 ,  50 ]. Depending upon the medium and culture conditions, active 
proliferation ceased at stasis after ~10–60 PD (Fig.  15.2 ). Our original medium, 
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MM, supported ~15–30 PD, with HMEC with predominantly myoepithelial lineage 
markers present by second passage (p) [ 51 ]. Our more recent M85/M87A media 
will support long-term pre-stasis growth of ~60 PD. Early passage populations from 
reduction mammoplasty and non-tumor mastectomy tissues contain a mixture of 
cells with markers of myoepithelial, luminal, and progenitor lineages, but the lumi-
nal cells do not maintain active growth with long-term passage [ 15 ,  52 ]. HMEC 
grown in the serum-free MCDB 170 medium achieved only ~10–20 PD before sta-
sis [ 22 ]. In media that support fewer PD, levels of p16 expression increase earlier. 
Although the mechanisms responsible for p16 induction have not been defi ned, it 
appears to refl ect a cellular response to certain types of environmental stress. 
Virtually all cells express p16 at stasis in all media used [ 15 ,  19 ]. Figure  15.3a  illus-
trates the gradually increasing p16 and SA-βGal expression and decreasing LI of 
HMEC growing in M85, and Fig.  15.3b, c  illustrates expression of luminal lineage 
markers in M85-grown HMEC.

  Fig. 15.2    Population doubling potential of pre-stasis HMEC in different media. Primary cultures 
from reduction mammoplasty specimen 184 were initiated from organoids in different media and 
subjected to partial trypsinizations. The number of PD in primary culture cannot be accurately 
determined; growth is shown starting from passage 2. Depending upon the medium, all prolifera-
tion stopped in HMEC grown in serum-containing media [MM, M85, and M87A with oxytocin 
(X)] after 10–50 PD beyond passage 2. The extensive proliferative potential in M87A+X supports 
generation of large batches of early passage pre-stasis HMEC from individual donors. HMEC 
initiated in serum-free MCDB170 (commercial MEGM) show rapid induction of p16 and cessa-
tion of growth. When cultures are allowed to sit without subculture for 2–3 weeks, post-selection 
post-stasis HMEC emerge and maintain growth to agonescence. If cultures are repeatedly subcul-
tured, fewer to no post-selection cells may emerge       
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    With the development of the M85/M87A media, it is now possible to generate 
and store frozen large quantities of normal HMEC. Using our protocol of repeated 
partial trypsinization of the primary organoid cultures [ 48 – 50 ], we can make large 
standardized HMEC batches from individual specimen donors at passages 2–5. 
These uniform batches permit reproducible large-scale and high-throughput experi-
mentation with normal HMEC from multiple individuals of different ages. Currently, 
we have initiated cultures from ~50 individuals (reduction mammoplasty, non- 
tumor mastectomy, milk) of women ranging in age from 14 to 91. 

 The ability to grow heterogeneous HMEC populations in the M85/M87A 
medium has enabled us to experimentally examine potential differences in HMEC 
lineage composition and differentiation as a function of age. In recent studies [ 52 ], 
pre-stasis HMEC strains from 18 young (<30) and 18 older (>55) women were 
analyzed by FACS and immunofl uorescence (IF) for lineage composition (Fig.  15.4 ). 
In cultured pre-stasis strains at 4p and in cells from uncultured dissociated organ-
oids, increasing age was associated with a decline of myoepithelial cells and an 
increase of luminal cells that exhibited molecular features usually ascribed to myo-
epithelial cells (increased expression of integrin alpha 6 and keratin (K)14) 
(Fig.  15.4b, c ). The tyrosine kinase receptor c-Kit has been postulated to be a marker 

  Fig. 15.3    Characterization of pre-stasis HMEC grown in M85 with oxytocin. ( a ) Expression of 
markers associated with proliferation (LI) and senescence (p16, SA-βGal) in pre-stasis 184 HMEC 
with increasing passage. Note the reciprocal relationship between the small cells with a positive LI 
and the larger, often vacuolated cells (senescent morphology) that are positive for p16 and SA-βGal 
and negative for LI. ( b ) Immunohistochemistry expression of luminal marker K19 in pre-stasis 184 
HMEC. ( c ) Immunofl uorescence expression of luminal markers EpCam and Muc1 in pre-stasis 
48R HMEC. Size marker = 200 μm (Modifi ed from Garbe et al. [ 15 ])       
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of luminal progenitors in humans [ 53 ]. With increasing age, the proportion of c-Kit- 
expressing HMEC increased in pre-stasis strains at 4p and in dissociated reduction 
mammoplasty samples (Fig.  15.4e, f ). HMEC FACS enriched for c-Kit+ cells at 4p 
and cultured for three additional passages showed self-maintenance and multipotent 
differentiation. Primary and 4p c-Kit+ cells embedded in 3D laminin-rich ECM 
cultures gave rise to terminal ductal lobular (TDLU)-like structures that were com-
posed of an inner core of K19-expressing luminal cells surrounded by K14- 
expressing myoepithelial cells, supporting the hypothesis that c-Kit+ cells are 

  Fig. 15.4    Age-associated alterations in lineage markers in pre-stasis HMEC grown in M87A with 
oxytocin. ( a ) Representative FACS analyses of CD227 and CD10 expression in 240L HMEC at 4p. 
Myoepithelial cells (MEP) are CD10(+) CD227(−), while luminal cells (LEP) are CD10(−) 
CD227(+). ( b ) Linear regression showing changes in proportions of LEP and MEP in HMEC 
strains at 4p as a function of age ( n  = 36 individuals). LEP and MEP from RM-derived strains are 
shown with  fi lled circles  or  boxes  and from P-derived strains with  open circles  or  boxes , respec-
tively. ( c ) Linear regression of proportions of LEP and MEP in dissociated uncultured organoids as 
a function of age ( n  = 8 individuals). ( d ) Changes in proportions of LEPs and c-Kit(+) HMEC in 
three representative strains as a function of passage. ( e ) Linear regression of proportions of c-Kit(+) 
HMEC in strains at 4p as a function of age ( n  = 36 individuals). ( f ) Linear regression of proportions 
of c-Kit(+) cells in dissociated uncultured organoids as a function of age ( n  = 11). ( g ) Phase images 
of representative structures derived from c-Kit(+) ( left ) and c-Kit(−) ( right ) cells cultured in 
laminin- rich basement membrane for 14 days. ( h ) Immunofl uorescence of a transverse frozen sec-
tion that shows K14 ( red ) and K19 ( green ) protein expression in a duct of a c-Kit(+)-derived 
TDLU-like structure from 3D culture. Nuclei were stained with DAPI ( blue ); the three-color 
merged image is shown at  right  (Modifi ed from Garbe et al. [ 52 ])       

 

M.R. Stampfer et al.



333

progenitors bearing multipotent activity (Fig.  15.4g, h ). However, similar to cells 
with luminal markers, the absolute percentage of c-Kit+ cells decreased with 
increasing passage (Fig.  15.4d ). These data suggest the exciting possibility that the 
observed age-associated increase in luminal breast cancer may be connected to 
changes that occur normally with aging in the human breast. The signifi cant age-
dependent changes to the mammary epithelium that we observed could make older 
women more vulnerable to malignant progression and underlay the increased lumi-
nal breast cancer incidence in women >55 years. Myoepithelial cells are thought to 
be tumor-suppressive and progenitors are putative etiologic roots of some breast 
cancers. Thus, during the aging process, the potential target cell population may 
increase, while there is a simultaneous decrease in the cells thought to suppress 
tumorigenic activity.

   Although normal HMEC can be obtained from reduction mammoplasties, 
growth in 2D on plastic does not recapitulate the complex normal in vivo situation, 
where cell structure and polarity and cell–cell and cell–matrix interactions play 
important biological roles [ 54 – 56 ]. The reduction of progenitor and luminal cell 
types with increasing passage likely refl ects the limitations of the 2D culture condi-
tions. Of note, despite growth for several passages on plastic dishes, placement of a 
heterogeneous HMEC population into constrained 3D conditions, such as micropat-
terned microwells [ 57 ] or laminin-rich ECM [ 49 ,  52 ], leads to 3D structures with 
correct lineage organization, with internally localized luminal cells surrounded by 
myoepithelial cells. 

 Pre-stasis HMEC remain genomically stable even when they reach stasis, consis-
tent with the noncritically short telomeres at stasis and the absence of signifi cant 
evidence of a DDR [ 15 ]. The proliferative arrest of cultured HMEC at stasis can be 
attributed to the rise in p16 expression, as transduction of shRNA to p16 (p16sh) 
into pre-stasis HMEC can allow them to bypass the stasis arrest [ 25 ,  58 ]. An out-
standing question is how the HMEC perceive stress-inducing conditions and signal 
that information to promote induction of p16. HMEC arrested at stasis share a simi-
lar molecular profi le regardless of their PD potential or growth media (Table  15.1 ), 
with one noticeable difference. HMEC grown in the serum-containing media have 
a typical senescent morphology of large fl at vacuolated cells (Fig.  15.3a ), whereas 
HMEC grown in serum-free MCDB 170 exhibit a more elongated morphology 
showing abundant stress fi bers [ 15 ,  22 ,  50 ]. We believe this difference is due to the 
serum-free medium being more stressful for cultured HMEC, consistent with the 
early rise of p16 and the low PD potential of HMEC initiated in MCDB 170 [ 19 , 
 22 ]. This difference in morphology at stasis may have led other investigators to 
consider this stasis arrest distinct and refer to it as “M0” [ 59 ,  60 ]. We do not yet 
know the molecular basis by which differentiated luminal cells may cease prolifera-
tion prior to stasis. Studies with HMEC from older women (below) suggest that 
p16sh transduction is not suffi cient to maintain active growth to agonescence in 
portions of their normal population. Stasis arrest in vivo may also result from 
p53-inducing stresses such as radiation or DNA-damaging agents. 

 To enhance the usefulness of our HMEC resources, and as part of our studies on 
malignant progression, we have been characterizing the normal pre-stasis HMEC 
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for a variety of molecular properties, including gene transcript profi ling, global pro-
moter methylation, DDR, and lineage markers as a function of passage [ 15 ,  25 ,  52 , 
 58 ]. These properties in the normal pre-stasis HMEC have been compared to HMEC 
that have overcome the stasis and/or telomere dysfunction senescence barriers and 
are described in more detail below. We have noted in these, and some additional 
assays [ 61 ], that as expected from human populations, interindividual differences 
can be seen. We also note, as referred to above and further illustrated in Fig.  15.7  
below, that HMEC with luminal versus myoepithelial lineage markers may express 
signifi cant biological differences. For example, EGFR is more highly expressed in 
late passage pre-stasis HMEC compared to early passage or milk-derived cells that 
have greater luminal cell representation, consistent with the greater dependence of 
basal versus luminal breast cancer subtypes on the EGF/MEK versus the IGF/PI3K 
signaling pathways [ 62 – 64 ]. These considerations become relevant when using nor-
mal HMEC as controls for cancer cells. Thus, it is important to examine cells from 
multiple individuals, and of different ages, to gain a more complete picture of nor-
mal HMEC physiology. Further, it may be of value to use lineage-enriched normal 
population for more accurate comparison to cancer cells with distinct lineage 
 profi les [ 65 ].   

15.4     Post-stasis Finite Lifespan HMEC 

15.4.1     Generation of Post-stasis Finite Lifespan HMEC 

 Normal HMEC are capable of sensing stress-inducing environments and respond-
ing with an RB-mediated growth arrest. In vivo, stasis may serve to eliminate from 
the proliferative pool cells that have been damaged by stress exposures. Many types 
of errors in the RB pathway can produce post-stasis HMEC; consequently, post- 
stasis populations may exhibit signifi cantly different biological properties. For 
example, a cell that overcame stasis by mutation of RB, a molecular hub, would 
have more profound alterations than a cell that only lost p16 expression. Bypassing 
or overcoming stasis is therefore one of the early stages at which the molecular 
alterations leading to malignancy can diverge. One of our long-term objectives has 
been to model the different types of pathways a normal HMEC may follow during 
transformation. We postulate that the combination of stasis-overcoming error and 
type of target cell affected establishes the initial pathway of cancer progression. 

 We have used several methods to obtain post-stasis cultured HMEC, focusing on 
perturbations that could play an etiologic role in human breast cancer. Although we 
have most commonly observed loss of p16 expression as the means used to over-
come stasis, p16 loss can result from diverse mechanisms, and our different p16(−) 
post-stasis populations show distinct biological properties. Figure  15.1  charts the 
emergence of varying post-stasis populations from HMEC grown in the different 
media and subjected to differing oncogenic exposures. 
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 Pre-stasis HMEC from over 150 individuals cultured in our serum-containing 
media have not shown any instance of a cell spontaneously overcoming the stasis bar-
rier. However, early experiments that exposed primary cultures of specimen 184 
HMEC grown in MM to the chemical carcinogen benzo(a)pyrene (BaP) resulted in the 
emergence of HMEC colonies that maintained growth after the bulk of the cultures 
ceased proliferation at stasis [ 23 ,  66 ]. Examination of three independently derived 
BaP-exposed post-stasis populations (initially called Extended Life) showed loss of 
p16 expression, associated with either mutations or promoter silencing at the p16 locus 
[ 19 ,  29 ]. BaP post-stasis cultures ceased growth after an additional 10–40 PD, with the 
exception of very rare cells that became immortal cell lines (see below). Later experi-
ments with MM-grown 184 HMEC transduced with GSE22, a peptide that inhibits 
p53 function [ 67 ], also yielded clonal post-stasis populations. In two experiments, 
almost all cells ceased growth at stasis, but a few colonies maintained growth [ 18 ]. 
This result indicates that the loss of p53 per se was not suffi cient to overcome stasis in 
these cultured HMEC; the GSE22 post-stasis population presumably sustained errors 
secondary to the p53 loss that enabled overcoming stasis. The GSE22 post-stasis 
HMEC exhibit a low level of p16 expression by  immunohistochemistry (IHC). 

 Stasis can be readily bypassed by exposure to p16sh [ 25 ,  58 ]. Cells grown in 
M85 or M87A+X, from specimens 184, 240L, 805P, and 122L, have been trans-
duced with p16sh at early passages, giving rise to p16sh post-stasis populations that 
maintained active growth until agonescence [ 58 ]. In several instances (see below) 
clonal immortal lines appeared around the period of agonescence. Recently, we 
have also observed clonal escape from stasis when c-Myc was transduced into M85/
M87A+X-grown 184, 240L, and 122L HMEC [ 58 ]. 

 When the HMEC are cultured in the stressful serum-free MCDB 170 medium, 
rare cells are able to overcome stasis in the absence of additional oncogenic expo-
sures (Fig.  15.2 ) [ 22 ]. We originally called the emergence of these post-stasis cells 
“selection” and this class of post-stasis HMEC “post-selection.” We now recognize 
that selection (what other labs later termed “M0”) is a stasis arrest. Post-selection 
post-stasis cells express wild-type p53 that is present in a stable form [ 18 ,  68 ,  69 ] 
but show DNA methylation of the p16 promoter and absence of p16 expression, as 
well as nearly 200 other changes in promoter DNA methylation [ 19 ,  25 ]. Most of 
the differentially methylated regions (DMR) present in post-selection HMEC are 
also seen in breast cancer-derived HMEC [ 25 ], indicating that these changes are 
associated with malignant progression. A recent publication suggests that post- 
selection HMEC may be on a transformation pathway leading to metaplastic cancer 
[ 70 ]. Although pre-stasis populations may be heterogeneous with respect to a cell’s 
ease in silencing p16 to become post-selection [ 71 ], our data indicate that post- 
selection cells are induced by growth in the stressful (oncogenic) serum-free MCDB 
170 medium and are not present in the starting normal cultures. As mentioned 
above, we have never seen a post-stasis cell emerge from unperturbed normal pre- 
stasis HMEC grown in any of our serum-containing media. Additionally, the emer-
gence of post-selection HMEC from pre-stasis HMEC grown in MCDB 170 can be 
reduced or eliminated by small changes in media composition or methodology. 
HMEC grown in MCDB 170 cease growth by passages 3–4, but after 2–3 weeks, 
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small colonies of post-selection cells suddenly appear. Subculturing prior to the 
robust appearance of the post-selection cells greatly reduces the number of subse-
quent emergent colonies. We presume that the induction of the p16(−) cells is occur-
ring during this time when the population is nonproliferative. The nature of the 
molecular mechanisms responsible for selection remains unknown. 

 As described further below, post-selection post-stasis HMEC display numerous 
aberrancies compared to normal pre-stasis cells. This is important to note since 
post-selection HMEC are being sold commercially as “normal primaries” although 
they are neither normal nor primaries. Since they have already acquired changes 
along the pathway to malignancy, they are not an accurate normal control for com-
parison to cancer cells. Given that it is now possible to grow large quantities of 
normal pre-stasis HMEC, we strongly recommend that studies aimed at understand-
ing normal HMEC behavior use normal pre-stasis HMEC. 

 Post-selection p16(−) HMEC grow actively for an additional ~30–70 PD, 
depending on the individual. As they near agonescence, they exhibit a senescent 
morphology, SA-βGal activity, a DDR, and an increasing genomic instability [ 18 , 
 20 ]. If p53 function is inactivated (e.g., using GSE22), cells continue to proliferate 
for an additional ~2–4 passages, with increasing evidence of cell death and debris 
characteristic of crisis (Fig.  15.5 ) [ 18 ]. The telomere dysfunction barrier is very 
stringent. We have never seen any unperturbed post-selection cell at agonescence 
spontaneously immortalize. We have also never seen any immortalization at crisis 
in post-selection HMEC with p53 function inactivated by GSE22, but rare immor-
talization at crisis using dominant-negative p53 constructs has been reported by 
others [ 72 ,  73 ]. This stringency is likely due to the molecular nature of this barrier; 

  Fig. 15.5    Growth and morphology of post-stasis post-selection 184 HMEC with and without 
functional p53. 184 HMEC, batch B, were transduced with GSE22-containing or control (Babe) 
vectors at passage 5. ( a )  Growth curves  of 184B-Babe and 184B-GSE22. Note the additional PD 
in the cultures lacking functional p53. We believe growth rates are similar ± p53, but the absence of 
p53-mediated growth inhibition allows more cells to continue to proliferate to crisis, leading to 
apparent faster growth of the population as cells near telomere dysfunction. ( b ) 184B-Babe at 
agonescence, 2 months after plating at passage 15, contains mostly large, fl at cells with some vacu-
olization; the cell population can retain this morphology and viability for over a year. ( c ) 184- 
GSE22, 2 weeks after plating at passage 15, shows areas of small proliferating cells and many very 
large fl at cells ( arrows ). ( d ) 184B-GSE22, 4 months after plating at passage 15, shows mostly large 
multinucleated, vacuolated cells and abundant cell debris. All photographs are at the same magni-
fi cation (Modifi ed from Garbe et al. [ 18 ])       
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cells that fail to maintain a G1 or G2 arrest with critically short telomeres will even-
tually die or become nonproliferative as a consequence of the genomic instability 
and mitotic catastrophes. Unlike an arrest based upon blocking cell cycle progres-
sion (e.g., elevated levels of CKIs at stasis), the widespread chromosomal derange-
ments present at telomere dysfunction are not reversible. Overcoming this barrier 
also differs from overcoming stasis in that escaped cells will have acquired genomic 
abnormalities and may retain some degree of genomic instability [ 30 ].

   Rare post-stasis cells likely preexist in some breast tissues; methylated p16 pro-
moters in HMEC have been seen in apparently normal breast tissues in vivo [ 71 ]. 
These rare cells have been called vHMEC; the nature of the error(s) leading to the 
silencing of p16 in vHMEC in vivo is not known. The term vHMEC has also been 
used by others to refer to p16(−) post-stasis cells in culture that are specifi cally post- 
selection [ 70 ,  74 ].  

15.4.2     Phenotypes of Post-stasis Versus Pre-stasis HMEC 

 We have begun molecular analyses to characterize and compare the different types 
of post-stasis HMEC cultures and post-stasis versus pre-stasis HMEC. These ongo-
ing studies have thus far indicated that post-stasis HMEC have signifi cant differ-
ences both from normal pre-stasis cells and among post-stasis types and that the 
post-selection type of post-stasis appears to be the most deviant from normal. 
Although not normal, for some experimental purposes post-selection or other post- 
stasis HMEC may be preferable, e.g., examining the requirements for and mecha-
nisms of overcoming the telomere dysfunction barrier or assaying cells at different 
stages in progression. 

 By defi nition, unlike normal cells, post-stasis HMEC have lost their ability to 
respond to p16-inducing stresses with growth arrest and have overcome the fi rst 
tumor-suppressive senescence barrier. Distinct from normal pre-stasis population, 
which contain cells with markers of multiple lineages [ 15 ], most post-stasis types 
examined have shown predominantly myoepithelial or basal lineage markers (e.g., 
K5/14, CD10, vimentin), although low levels of some luminal-associated markers 
can be seen and may increase with passage in post-selection populations (e.g., 
K8/18, Muc1) [ 15 ,  51 ]. Recent studies from the Kuperwasser lab have shown that 
post-selection HMEC can differentiate along an epidermal pathway [ 70 ]. However, 
our lineage studies were initially performed with post-stasis cells derived from 
younger women. Preliminary studies using HMEC from older women, and alterna-
tive methods of bypassing stasis, indicate that it is possible to obtain post-stasis 
HMEC in culture with markers of progenitor or luminal lineage. An important dis-
tinction between all post-stasis types and normal pre-stasis HMEC is the gradual 
increase in genomic instability as post-stasis cells approach the telomere dysfunc-
tion barrier, inserting potential unknown changes into these populations, whereas 
pre-stasis HMEC maintain a normal karyotype, even at stasis [ 15 ,  20 ]. 

 As noted above, compared to pre-stasis cells, post-selection HMEC display a 
large number of DMR in addition to the p16 promoter locus. In contrast, the BaP 
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and GSE22 post-stasis populations showed only ~10 DMR, including ones in the 
HOXA cluster also seen in post-selection and tumor-derived HMEC, while the 
p16sh post-stasis populations showed only ~5 DMR, which did not overlap with the 
other post-stasis cultures or tumor-derived cells (Fig.  15.6 ) [ 25 ]. Since most of the 
post-selection DMR are associated with breast cancer cells, post-selection HMEC 
may be further advanced along the pathway of malignant progression than post- 
stasis BaP, GSE22, or p16sh types.

   Gene expression profi ling has compared post-stasis post-selection BaP and 
p16sh types to normal pre-stasis HMEC and HMF [ 15 ,  58 ,  75 ] and immortal lines 
[ 75 ]. Gene transcripts from growing and senescent pre-stasis and post-selection 
HMEC show similarities as well as many differences; there are also a few interindi-
vidual differences (Fig.  15.7 ). Some genes predominantly expressed in pre-stasis 
HMEC (blue boxes) such as K19, EpCam (TACSTD1), and Prom1 (CD133) are 
luminal markers, with expression greatly reduced at the higher passages lacking 
luminal cells. Others, like Muc1, do not have obvious correlation with passage 
level. Some genes (pink box) appear to be more prevalent in myoepithelial cells, as 
they are low in the growing milk-derived 250MK luminal cells and reduced in most 
early passage pre-stasis cultures. The EGF receptor falls into this category, consis-
tent with lower expression of the EGFR in luminal versus basal or metaplastic types 

  Fig. 15.6    DNA methylation changes in HMEC during malignant progression. ( a ) Progression of 
DNA methylation in the HOXA gene family cluster from fi nite lifespan HMEC to malignantly trans-
formed breast cancer cells.  Top , map of the RefSeq genes of the HOXA cluster followed by the loca-
tion of CpG islands.  Bottom , heat map of DNA methylation state of the HOXA gene family cluster 
based on the microarray data from a custom array with 11,328 probes.  Green , hypomethylated sites; 
 red , hypermethylated sites. Nucleotide position along chromosome 7 is shown below the heat map. 
Note the differences among the distinct post-stasis types. ( b ) Venn diagram illustrating common and 
different DMR among the distinct post-stasis types examined (Modifi ed from Novak et al. [ 25 ])       
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of breast cancers [ 62 – 64 ]. Many genes showed increased expression at higher pas-
sage levels (yellow boxes); these could be further separated into transcripts 
expressed at both stasis and agonescence (top yellow), mainly at stasis (lower yel-
low), and mainly at agonescence. Other genes were preferentially expressed in 
growing populations (turquoise box). Venn diagrams of transcripts differentially 
expressed in HMEC at stasis or agonescence and HMF at senescence, compared to 
their growing populations, illustrate these distinctions more clearly (Fig.  15.7b ). 
The majority of genes modulated at stasis and agonescence were distinct, although 
there was also signifi cant overlap. These data also highlight the nearly complete 

  Fig. 15.7    Gene transcript profi les in pre-stasis and post-selection HMEC from different individu-
als. ( a ) Hierarchical clustering (by  rows ) of gene transcript profi les in growing and senescent pre- 
stasis and post-selection HMEC. Pre-stasis 184D, 48RT, and 240LB HMEC are shown in  columns  
with increasing passage (p) up to stasis; (X) indicates growth in oxytocin. Post-selection 184B and 
48RS HMEC are growing and agonescent populations. Genes shown are 77 selected for the great-
est variance across all samples, plus a few selected lineage- or differentiation-associated genes. ( b ) 
Venn diagram of genes modulated at HMEC stasis using growing pre-stasis as baseline, at HMEC 
agonescence using growing post-selection as baseline, or at HMF senescence with growing fi bro-
blast as baseline. Diagram depicts the number of genes unique to each group and the number that 
overlaps between and among the groups (Modifi ed from Garbe et al. [ 15 ])       
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lack of overlap between HMEC and HMF senescence-associated transcripts. Such 
results illustrate strong cell type specifi city in biological processes associated with 
senescence and suggest caution in extrapolating properties of fi broblast senescence 
to epithelial cells. Preliminary studies comparing post-stasis BaP and p16sh cul-
tures to pre-stasis and post-selection HMEC show signifi cant differences among the 
post-stasis types, with the p16sh and BaP post-stasis cells more similar to normal 
pre-stasis HMEC than the post-selection cells.

   Another major difference among post-stasis populations is their responses to 
overexpressed c-Myc [ 58 ]. Earlier work showed that transduction of c-Myc into 
post-selection HMEC did not have a signifi cant effect on telomerase activity, as 
measured using the TRAP assay, and produced only one clonal immortalized line in 
ten experiments [ 58 ,  76 ]. In contrast, c-Myc transduced into three independent BaP 
post-stasis cultures, and all tested p16sh post-stasis populations, produced a rapid 
increase in TRAP activity and apparently uniform immortalization. We are cur-
rently investigating the molecular properties that might underlie this distinction. 

 Collectively, these data demonstrate how the molecular pathways associated 
with different types of transformed HMEC can diverge at the earliest stages of 
malignant progression, in still fi nite lifespan HMEC, when they bypass/overcome 
the stasis barrier.   

15.5     Immortally Transformed HMEC Lines 

15.5.1     Generation of Immortal HMEC Lines 

 The telomere dysfunction barrier can be overcome or bypassed by the expression of 
suffi cient telomerase to maintain stable telomere lengths. Based on our experience 
and the reports of others, reactivation of suffi cient telomerase in normal fi nite lifes-
pan HMEC is diffi cult to achieve using agents thought to play a role in breast cancer 
etiology (i.e., not ectopic hTERT transduction or viral oncogenes) and may require 
multiple errors. This situation may refl ect the fact that long-lived animals such as 
humans have evolved mechanisms for stringent repression of telomerase in normal 
adult non-stem cells, presumably for tumor suppression. In contrast, normal cells 
from short-lived mammals such as mice do not show such stringent telomerase 
repression and readily immortalize [ 10 ,  77 ]. We have postulated that telomerase 
reactivation and immortalization may be a rate-limiting step in human epithelial 
carcinogenesis and so believe that great caution should be exercised in extrapolating 
mechanisms of murine malignant progression to humans, since this critical barrier to 
malignancy is not present in the commonly used rodent cells. Overcoming telomere 
dysfunction may correlate with DCIS in vivo, which commonly display short telo-
meres and genomic instability, and may show telomerase reactivation [ 30 ,  39 – 43 ]. 
We have hypothesized that the genomic instability associated with agonescence and 
crisis can give rise to errors permissive for telomerase reactivation [ 18 ,  76 ] and that 
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the generation of breakage-fusion-bridge (BFB) cycles prior to immortalization may 
underlie some of the genomic instability seen in many carcinomas [ 30 ]. Additionally, 
the extensive genomic instability during telomere dysfunction may introduce 
unknown errors that can contribute to the ultimate cancer cell phenotype, including 
level of aggressiveness. Our hypotheses are consistent with recent publications indi-
cating that many properties of invasive tumors are already present in their preinva-
sive DCIS lesions, such as tumor markers, gene expression profi les, gene methylation, 
PIK3CA mutations, and genomic errors [ 78 – 82 ]. 

 Overcoming the telomere dysfunction barrier, with its associated genomic insta-
bility, is an additional point where molecular pathways to transformation may diverge. 
As described in more detail below, our studies have led us to speculate that at least 
two distinct sets of alterations may be involved in HMEC immortalization during 
malignant progression. One set of changes is needed for increased hTERT expres-
sion, and a subsequent set may be needed for maintenance of short stable telomeres. 

 We have generated a variety of immortally transformed lines, initially from spec-
imen 184 and more recently from additional specimens, using various oncogenic 
agents (Fig.  15.1 ) [ 14 ,  18 ,  23 – 25 ,  58 ,  66 ,  83 – 87 ]. Most of these lines were derived 
from post-stasis cultures, although in a few instances (involving hTERT or c-Myc 
transduction) lines emerged following perturbations of pre-stasis populations. Our 
fi rst immortal lines were obtained from the BaP post-stasis cultures, 184Aa and 
184Be [ 23 ,  24 ,  66 ,  83 ]; extremely rare lines appeared at agonescence (184A1, 
184AA4, 184AA8, 184B5, 184BE1) (Fig.  15.1 , panel A   ). These cells had been 
exposed to BaP and likely harbor errors in addition to the loss of p16 expression. We 
hypothesize that rare errors produced by the genomic instability at agonescence can 
complement preexisting errors to allow telomerase reactivation. More frequent but 
still rare clonal lines appeared at agonescence following transduction of the breast 
cancer-associated oncogene ZNF217 into the BaP post-stasis 184Aa population 
(184AaZN1-3) [ 85 ], while inactivation of p53 in 184Aa using GSE22 produced 
frequent clonal immortalization at crisis (184AaGS1-2) [ 18 ]. Uniform immortaliza-
tion was obtained following transduction of c-Myc into three different BaP cultures 
(184AaMY1, 184BeMY1, 184CeMY1) [ 58 ,  84 ]. 

 No post-selection HMEC has been observed to spontaneously immortalize. Rare 
clonal lines appeared, usually around agonescence, following overexpression of 
ZNF217 (184ZN4-7) (Fig.  15.1 , panel B) [ 84 ,  85 ]. One clonal line appeared in ten 
experiments where c-Myc was overexpressed (184SMY1) [ 58 ]. We hypothesize that 
rare errors generated by the genomic instability at agonescence may complement 
ZNF217 or c-Myc to allow telomerase reactivation. Overexpression of both c-Myc and 
ZNF217 in post-selection HMEC was able to produce immortal lines in repeat experi-
ments (184ZNMY1-4, unpublished). Some of these lines immortalized early, prior to 
agonescence, and showed no chromosomal copy-number changes by comparative 
genomic hybridization (CGH) (Chin, Stampfer, Garbe, unpublished). However, 
Southern analysis of the retroviral insertion site indicates that these lines are also clonal. 

 More recently, we have targeted early passage pre-stasis cells grown in M85/
M87A for transformation (Fig.  15.1 , panel C) [ 58 ]. Our preliminary studies indicate 
that rare clonal lines may emerge following overexpression of c-Myc. If cultures are 
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fi rst transduced with shRNA to p16 and then c-Myc, apparently uniform immortal-
ization occurs. In some instances, clonal lines have emerged around the time of 
agonescence from the cultures that received the p16sh alone. These new M85/
M87A-derived lines are not yet well characterized. The ability of c-Myc to effi -
ciently confer widespread, non-clonal immortalization to BaP and p16sh post-stasis 
populations provides a reproducible method of immortalization that can facilitate 
determining the mechanisms involved in HMEC immortalization and assaying 
agents that may prevent immortalization.  

15.5.2     The Conversion Process During Immortalization 

 Observations of our immortally transformed lines possessing functional p53 led us 
to describe a process we called conversion [ 14 ,  24 ,  83 – 88 ]. Conversion has been 
most extensively studied in the fi rst immortal line we derived, 184A1 (Fig.  15.8 ), 
but remains poorly understood. Tantalizing, but limited data, suggests that this little- 
known process could be involved in maintaining the short stable telomeres found in 
most carcinoma cells and in human epithelial cell lines immortalized by reactivation 
of endogenous telomerase activity [ 24 ,  83 ,  89 ].

   Our basic observations have been that newly immortal clonal p53(+) HMEC 
lines, which have overcome agonescence and gained the potential to express telom-
erase, initially displayed little TRAP activity and had ongoing telomere erosion 

  Fig. 15.8    Conversion of newly immortal p53(+) HMEC lines is associated with changes in many 
key properties. ( a ) The p53(+) 184A1 line undergoing conversion exhibits changes in growth 
capacity (CFE) and expression of p57 and becomes resistant to TGFβ growth inhibition and OIS. 
( b ) 184A1 undergoing conversion exhibits changes in expression of telomerase activity and mean 
TRF length;  light blue ovals  indicate faint TRF signals. When pre-conversion 184A1 is transduced 
with GSE22, there is a rapid increase in telomerase activity associated with stabilization of TRF 
length (Adapted from Stampfer et al. [ 24,   83 ] and Nijjar    et al. [ 88 ])       
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with proliferation. When telomeres became extremely short (≤3 kb), the conversion 
process ensued. Expression of the CKI p57 Kip2  initially abruptly increased and then 
slowly declined, associated with initial slow-heterogeneous growth and then grad-
ual reattaining of uniform good growth. Telomerase activity gradually increased, 
and the faint very short telomeres seen during conversion gradually became stabi-
lized with a mean TRF of ~3–7 kb. Curiously, HMEC lines during conversion 
exhibit little evidence of telomere dysfunction and telomeric associations despite 
their extremely short mean TRF lengths and can emerge post-conversion with no or 
few additional gross genomic alterations [ 30 ,  58 ,  90 ]. We have speculated that the 
initial rapid rise in p57 levels, and associated growth inhibition, may provide protec-
tion from potentially catastrophic mitoses until suffi cient telomerase becomes avail-
able to maintain telomeric ends. Associated with the increased telomerase activity, 
the immortal lines gradually developed the ability to maintain growth in the pres-
ence of TGFβ [ 86 ]. Inactivation of p53    function (using GSE22) in pre-conversion 
populations led to a rapid increase in endogenous TRAP activity, rapid reduction of 
existing p57 levels, gaining the ability to maintain growth in TGFβ, and lines with 
short, stable telomeres [ 24 ]. GSE22 transduction into the fi nite lifespan precursors 
of the immortal lines did not induce signifi cant TRAP activity, indicating that abro-
gation of p53 function alone is not suffi cient for telomerase reactivation in post- 
stasis HMEC. Therefore, functional p53 appears capable of repressing telomerase 
expression in newly immortal HMEC lines until conversion-associated change 
commence when the mean TRF declines to ≤3 kb. 

    Immortal HMEC lines that lack functional p53 (e.g., 184AA2, 184AA3) showed 
some initial TRAP activity that rapidly increased, showed no p57 expression, and 
quickly attained good uniform growth ± TGFβ. Their mean TRF length stabilized at 
~4–5 kb and never declined to the very low levels seen in the p53(+) lines [ 24 ]. The 
rapid conversion and telomerase expression by p53(−) lines may explain why the 
process of conversion has not been commonly reported or investigated. Most in 
vitro immortalized human epithelial lines have been obtained using agents that inac-
tivate p53. However, the majority of breast cancers express wild-type p53; a slower 
p53(+) conversion process may be relevant to early stage breast carcinogenesis in 
vivo. We have speculated that the low levels of telomerase expression coupled with 
extremely short telomeres could make newly immortal p53(+) breast cancers par-
ticularly vulnerable to therapeutic interventions targeting telomere dynamics. 

 In contrast to transduction of GSE22, ectopic overexpression of hTERT in p53(+) 
pre-conversion cells produces rapid full immortalization with TGFβ resistance but 
precludes conversion-induced reactivation of suffi cient endogenous telomerase; the 
resultant populations did not exhibit short stable telomeres [ 86 ]. Similarly, when 
hTERT was transduced into post-stasis post-selection HMEC, rapid full immortal-
ization with TGFβ resistance occurred, but the population also exhibited longer 
telomeres than 184A1 ± GSE22 [ 86 ]. Therefore, high telomerase expression by 
itself is suffi cient to render these HMEC immortal and resistant to the growth inhib-
itory effects of TGFβ, although they remain sensitive to TGFβ induction of ECM- 
related molecules [ 91 ]. However, hTERT-induced immortalization did not lead to 
short stable telomeres. 
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 A signifi cant change associated with conversion is gaining resistance to OIS. Our 
post-conversion lines ± functional p53 are no longer vulnerable to OIS, but pre-
conversion lines remained sensitive [ 14 ]. The TERT-immortalized lines from post-
stasis and pre-conversion HMEC initially appear sensitive to OIS; SA-βGal is 
expressed and little proliferation is observed; however, growth can be maintained 
[ 47 ]. These results suggest that the process of endogenous telomerase reactivation 
during conversion is connected to changes in the pathways that govern OIS, a bar-
rier relevant to in vivo human carcinogenesis [ 92 – 94 ]. 

 Our current hypothesis is that conversion may refl ect a need to alter chromosome 
conformation at the telomeres when cells transition from a fi nite state (no stable 
telomere length maintenance) to one where suffi cient telomerase maintains short 
stable telomeres. Functional p53 may present a partial barrier to this process until 
very short telomeres provoke a structural change at the telomeric ends. As well 
studied in yeast, immortal cells can have “counting” mechanisms to maintain telo-
meres within a limited size range [ 95 ]. Since most human carcinoma cells, as well 
as our immortal HMEC lines, maintain telomeres within a short range (mean 
TRF~3–7 kb) [ 83 ,  89 ], some type of “counting” mechanism likely is involved. Short 
stable telomeres are not seen in normal telomerase-expressing human cells such as 
stem cells and lymphocytes [ 96 ], suggesting that active processes maybe required 
for conversion to the distinct telomeric state seen in the immortalized and cancer- 
derived cells. The longer mean TRF lengths of TERT-immortalized HMEC, and 
TERT-transduced pre-conversion 184A1 (lines that do not undergo conversion) [ 86 ] 
as well as their distinct OIS responses, indicate that lines immortalized by hTERT 
may not accurately refl ect important biological properties and behaviors of carci-
noma lines. Preliminary studies using the 184A1 line have shown that some of the 
epigenetic alterations seen in later passage 184A1 occur during the process of con-
version and are not present in pre-conversion 184A1 populations or in later passage 
TERT-transduced pre-conversion 184A1 (Vrba, Novak, Stampfer, Futscher unpub-
lished). Conversion may potentially represent a promising therapeutic target. If epi-
genetic alterations are required to allow stable telomere maintenance, interference 
with this process at the premalignant stage might prevent further progression.  

15.5.3     Generation of Malignant HMEC Lines 

 Once the HMEC are immortally transformed and no longer vulnerable to OIS, the 
introduction of one or two oncogenes can further transform these cells towards 
malignancy (e.g., anchorage-independent growth, disorganized growth in Matrigel, 
growth factor independence, and/or tumorigenicity in immunosuppressed mice) 
(Fig.  15.1 ) [ 14 ,  44 ,  45 ,  97 ]. This property makes immortally transformed lines such 
as 184A1 and MCF10A useful for examining agents that can propel cells from the 
stage of nonmalignant immortal to malignancy and the mechanisms responsible for 
this transition [ 98 – 102 ]. The same oncogenes overexpressed in fi nite lifespan 
HMEC (both normal pre-stasis and abnormal post-stasis) do not confer malignancy 
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and commonly induce senescence. Thus, in marked contrast to normal or fi nite 
cells, nonmalignant immortally transformed lines have acquired the errors that 
allowed them to escape multiple tumor-suppressive senescence barriers and be only 
one oncogene away from malignancy. The acquisition of OIS resistance upon 
immortalization likely contributes to the observation that immortality is the most 
common alteration from normal associated with human carcinomas. Nonmalignant 
immortal lines, having undergone many signifi cant transformations from the nor-
mal state, do not constitute accurate “normal” controls nor do they represent the 
starting point of early stage carcinogenesis. They can control for changes associated 
with immortality when comparing immortal malignant tumor lines with nonmalig-
nant immortal cells. We view nonmalignant immortal lines as at a stage similar to 
abnormal telomerase (+) cells in DCIS, which recent studies have shown already 
possess many of the errors found in breast cancers [ 78 – 82 ]. Since the aggressive 
phenotype of breast cancers may be predetermined early, at the premalignant stage, 
a better understanding of early stage progression, i.e., the steps from normal pre-
stasis HMEC to nonmalignant immortal cells, may offer new insight into both 
the mechanisms of carcinogenesis and possibilities for therapeutic intervention in 
this progression.  

15.5.4     Phenotypes of Immortal Versus Finite Lifespans HMEC 

 As previously noted, immortal HMEC lines differ from fi nite lifespan HMEC in their 
ability to maintain growth in the presence of TGFβ and their resistance to OIS. Most 
immortal lines, having undergone the period of genomic instability during telomere 
dysfunction, also exhibit gross genomic errors and ongoing genomic instability [ 24 , 
 30 ,  58 ,  90 ]. We have further compared immortal, post-stasis, and pre- stasis HMEC 
for DMR and gene transcript profi les (Figs.  15.6  and  15.9 ) [ 25 ,  58 ,  75 ]. As men-
tioned above, post-stasis HMEC vary widely in number of DMR. When representa-
tive immortal lines were examined, a total of ~500 DMR were observed, most of 
which are also found in breast tumor-derived cells [ 25 ]. DMR found in post- selection 
post-stasis HMEC were also seen in immortal lines that derived from BaP post-stasis 
cultures lacking these DMR. An unsupervised clustering of DMR (Fig.  15.9a ) shows 
most nonmalignant immortal lines clustering with tumor-derived lines and post-
selection post-stasis cultures. Notably, the non-clonal lines derived from Myc-
immortalized BaP post-stasis cultures had fewer DMR than the fi nite post-selection 
cells, although still many more DMR than seen in their post- stasis precursors   . Venn 
diagrams (Fig.  15.9b ) illustrate the overlaps and distinctions in DMR among the 
normal to tumor cells. A good example of stepwise DNA methylation changes 
during HMEC transformation can be seen in the HOXA gene cluster, known to 
undergo aberrant methylation during breast carcinogenesis (Fig.  15.6a ) [ 103 ,  104 ]. 
Methylation increases towards the 3′ end of the cluster as normal HMEC transition 
to malignancy, with HMEC at different stages in our transformation model showing 
appropriate intermediate levels of methylation. Altogether, our epigenetic data indi-
cate that cancer-associated DMR can occur at the earliest stages of transformation, 
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groups of DNA methylation changes can arise concurrently, and malignant progres-
sion is associated with progressive DMR changes. We are currently examining a 
larger range of our immortal HMEC to determine if specifi c epigenetic changes may 
correlate with specifi c parameters of the immortalization pathway.

  Fig. 15.9    Comparison of DMR and gene transcript profi les among fi nite (pre- and post-stasis) and 
immortal (nonmalignant and malignant) HMEC types. ( a ) Heat map showing clustering of DMR in 
post-stasis to malignant HMEC types, based on the microarray data from a custom array with 11,328 
probes.  Red , hypomethylated sites;  green , hypermethylated sites. ( b ) Venn diagrams illustrating 
common and different DMR among post-stasis and immortal (nonmalignant and malignant) HMEC 
types. ( c ) Unsupervised clustering of gene transcript profi les of pre-stasis, post-selection, and 
immortalized HMEC. All genes (of 2,319) that changed expression in one or more samples were 
used to cluster the cell types and lines by overall similarity. Sample 1001-13 was HMEC, advertised 
as normal, obtained from Clonetics (Lonza). Samples of 184A1 and 184B5 designated by ( a ) were 
obtained from ATCC. ( d ) Supervised clustering of pre-stasis, post- selection, and immortalized 
HMEC. Gene expression values were normalized and characterized for the signifi cance of overex-
pression in one group relative to other groups in the comparison. The top 200 genes (of 1,342) that 
are signifi cantly overexpressed in one group are shown ( c  and  d  modifi ed from Li et al. [ 75 ])       
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   Using both unsupervised and supervised clustering of gene transcript data, our 
immortal lines show similar expression as MCF10 and MCF12A and are clearly 
distinguished from the fi nite HMEC, although differences exist between pre-stasis 
and post-selection fi nite cells (Fig   .  15.9c, d ). HMEC advertised as normal that were 
obtained from Lonza/Clonetics (1001-13) sort cleanly with our aberrant post- 
selection post-stasis HMEC. Preliminary studies examining a greater range of our 
immortalized lines, post-stasis types (post-selection, BaP, and p16sh), and recent 
pre-stasis cultures (shown in Fig.  15.7a ) are consistent with these earlier data. 

 Collectively, these data demonstrate that the transition to immortality is accom-
panied by major molecular alterations in gene expression, epigenetic marks, and 
other parameters associated with malignancy and show how nonmalignant immor-
tal HMEC lines more closely resemble tumor cells than normal HMEC.  

15.5.5     Lineage Characterization of Immortalized HMEC Lines 

 Human breast carcinomas exhibit a wide range of molecular properties, correlated 
with distinct clinical behaviors [ 1 – 4 ]. In general, we have seen that our different 
methods of inducing transformation can yield cell lines with signifi cantly different 
properties; however, most in vitro immortalized lines thus far generated have lineage 
markers similar to the basal subtype of human breast cancers [ 1 ]. This subtype has a 
poor prognosis but represents only a minority of breast cancer. We now hypothesize 
that prior diffi culty in developing a greater variety of transformed lines was due to (1) 
poor culture systems for growing normal human HMEC with luminal or progenitor 
properties, (2) use of cells from young reduction mammoplasty tissues, and (3) use 
of a limited number of oncogenic agents. We have begun characterization of lineage 
markers in some of our newly developed lines (Fig.  15.1 , panel C). Lines from the 
younger women (184, 240L) again show a predominantly basal phenotype using 
FACS, IF, and IHC analyses, although variation is observed in CD24/CD44 ratios 
and EpCam expression [ 58 ]. The lines vary in expression of EMT- and stem cell-
associated properties, gene transcript profi les, genomic errors, and other phenotypes 
[ 58 ] (Garbe, Vrba, Futscher, LaBarge, Stampfer, unpublished). Excitingly, our fi rst 
experiments using HMEC from older women (805P, 122L) have yielded lines that 
express luminal and progenitor markers (Garbe, Stampfer, LaBarge, unpublished). 
Now that we can grow and FACS enrich progenitor and luminal cell populations, 
future studies can assess the relative contributions of target cell type and oncogenic 
agents employed in affecting the phenotype of resultant transformed lines. 

 The generation of transformed lines more representative of in vivo breast cancer 
types may enhance our understanding of the etiology and properties of a wider 
range of breast cancers. Thus far, a very limited number of nonmalignant immortal 
cell lines (mainly MCF10A, 184A1, MCF12A, 184B5, HMT-3522 S1) have been 
used in a large number of studies examining the transition from nonmalignant to 
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malignant immortal. However, these lines all exhibit a basal or claudin-low pheno-
type and may consequently not accurately refl ect properties of the majority luminal 
breast cancer types. For example, basal versus luminal HMEC may differ in their 
relative usage of the EGF/MEK versus IGF/PI3K signaling pathways and in EMT- 
associated properties.   

15.6     Integrated Analysis of HMEC Model System 

 The work reviewed thus far illustrates how we have developed a wide-ranging cell 
culture system for investigating HMEC transformation. Starting with pre-stasis 
HMEC, exposure to a variety of oncogenic agents has generated cells at different 
stages of multistep carcinogenesis, providing isogenic cultures for examining the 
molecular alterations associated with progression. Such an integrated system avoids 
many of the variability problems inherent in comparing normal and transformed 
cells not only from different individuals but also from different organ sites, tissue 
types, and/or species and facilitates focus on changes due to the process of transfor-
mation. Being able to analyze the range of alterations from normal fi nite lifespan 
pre-stasis cells to malignantly transformed cells provides a comprehensive over-
view that assists understanding how the many alterations associated with carcino-
genesis collaborate molecularly and temporally to produce cancerous cells. Below, 
we provide some examples of how this integrated HMEC model of transformation 
offers insight into processes associated with human breast carcinogenesis. 

15.6.1     Genomic Instability, Telomeres, and Telomerase 
Expression 

 Normal human epithelial cells retain a stable genotype in vitro and in vivo; however, 
carcinomas usually express genomic instability and aneuploidy. Our model system 
has allowed us to examine when the transition to genomic instability occurs during 
the process of transformation in culture [ 15 ,  20 ,  24 ,  30 ,  90 ]. Proliferative fi nite lifes-
pan HMEC undergoing telomere erosion due to insuffi cient telomerase activity 
maintain genomic stability until telomeres become critically short, which then leads 
to uncapped telomeres and telomeric associations. Cells arrested at stasis have a 
normal karyotype and noncritically short mean TRF (>5 kb), but virtually all HMEC 
arrested at agonescence display abnormal metaphases, with a preponderance of 
telomeric associations, and a mean TRF <5 kb [ 20 ,  105 ]. These results are consis-
tent with in vivo data that show normal karyotypes in atypical ductal hyperplasia but 
genomic instability, abnormal karyotypes, and short telomeres at the DCIS stage 
[ 30 ,  43 ]. We have consequently hypothesized that the genomic instability naturally 
encountered in fi nite cells with eroded telomeres may contribute to the errors that 
allow these cells to reactivate suffi cient telomerase activity and become immortal. 
However, in the vast majority of instances, in the absence of preexisting 

M.R. Stampfer et al.



349

immortality- disposing errors, this genomic instability leads to cell death or prolif-
erative arrest, providing an effective tumor-suppressive senescence barrier. The 
presence of short telomeres and genomic instability in a large percentage of DCIS 
argues against the proposition that the initial target cell for transformation in these 
cases already possessed suffi cient telomerase activity. 

 We have further suggested that this inherent genomic instability resulting from 
eroded telomeres may be a signifi cant contributor to the observed instability and 
resultant aneuploidy in breast cancer-derived cells. All our immortally transformed 
lines examined that encountered telomere dysfunction display CGH alterations and/
or karyotypic abnormalities. Genomic alterations can be observed before and dur-
ing the process of immortalization and conversion; however, once suffi cient telom-
erase activity is present, the level of instability can decrease in p53(+) lines [ 24 ,  30 , 
 105 ]. Presumably, telomerase allows telomere capping, preventing the formation of 
new telomeric associations, but the already present chromosomal derangements 
lead to ongoing cycles of BFB. In the absence of functional p53, lines that immor-
talized after undergoing genomic instability may show increasing instability [ 24 ]. 
Most of the genomic alterations generated by telomere dysfunction will be unre-
lated to the requirements of immortalization or carcinogenesis, but some could 
affect the clinical properties of a resultant malignant cell. It is therefore possible that 
the genomic instability in premalignant cells may be the source of many of the “pas-
senger” mutations present in carcinomas, as well as of “driver” mutations that infl u-
ence prognosis. This hypothesis is consistent with recent publications that suggest 
that the invasive phenotype of breast cancer is already genetically programmed at 
the preinvasive stages of disease progression [ 82 ]. 

 Another possible corollary of our data is that the timing of telomerase reactiva-
tion during the period of telomere dysfunction may affect subsequent instability. 
Our immortal lines derived from cultures in the midst of telomere dysfunction con-
tain many more genomic errors than lines derived before widespread instability 
ensued [ 24 ]. For example, the 184A1 line, which immortalized at ~7–8 p with a 
>5 kb mean TRF, has few errors, no BFB, and, unlike most in vitro transformed 
HMEC lines, can remain genomically stable upon passage. In contrast, the 184AA4 
line, also derived from post-stasis 184Aa, immortalized at ~12–13 p when the popu-
lation was experiencing telomere dysfunction, and exhibits numerous genomic 
errors and ongoing instability. Possibly, breast cancers with diploid karyotypes 
refl ect cells that underwent immortalization prior to extensive telomere dysfunction- 
induced genomic instability. 

 We have recently begun examination of the CGH profi les and karyology of the 
non-clonal immortal lines generated by direct targeting of the stasis and telomere 
dysfunctional barriers using transduction of p16sh and c-Myc. The three lines thus 
far tested contained cells with normal karyotypes at early passage [ 58 ]. This result 
supports our model of the tumor-suppressive senescence barriers and the hypothesis 
that genomic instability functions to generate errors critical for transformation, but 
is not essential per se. If the stasis and telomere dysfunction senescence barriers are 
bypassed by direct targeting, generation of genomic errors may be unnecessary. 
We therefore believe that no specifi c mutator genes are required to account for the 
genomic instability seen in breast carcinomas, although mutations that do increase 
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instability could also be present and selected for during malignant progression, and 
contribute to this phenotype. Rather, development of genomic instability is inherent 
in the process of malignant progression, particularly at the stage of telomere dys-
function. The further development of aneuploidy has been proposed to result from 
dysfunctional telomeres interfering with the completion of cytokinesis [ 105 ].  

15.6.2     Immortalization and Responses to TGFβ 

 Normal cultured HMEC are growth inhibited by TGFβ and show induction of 
ECM- and proteolysis-related molecules (e.g., fi bronectin, collagen IV, laminin, 
type IV collagenase, uPA, and PAI-1) [ 13 ,  24 ,  86 ,  91 ]. Our studies comparing the 
responses to TGFβ of HMEC ranging from normal pre-stasis to transformed [ 13 , 
 24 ,  86 ,  91 ,  106 – 108 ] have indicated that the expression of telomerase activity (from 
either endogenous reactivation or transduction of hTERT) is suffi cient by itself to 
allow HMEC to maintain growth in TGFβ while also remaining responsive to 
TGFβ-mediated protein induction. These results were among the fi rst to demon-
strate that multiple TGFβ actions can operate via divergent pathways, since the 
effects on cell growth could be dissociated from stimulation of ECM components. 
Immortal and malignant lines can maintain growth in TGFβ, although some may 
exhibit a slightly decreased growth rate, likely refl ecting the metabolic price exacted 
by the increased synthesis and secretion; we do not consider this refl ective of a 
direct growth inhibition. The mechanism by which telomerase activity prevents 
TGFβ from inhibiting growth is still unknown; however, our results indicate that 
immortally transformed HMEC expressing hTERT do not require additional errors 
to become TGFβ growth resistant. 

 In contrast to normal HMEC, many human carcinomas, including breast, can 
maintain growth in the presence of TGFβ while retaining other metabolic responses, 
similar to our immortalized lines, although some carcinomas have lost all responsive-
ness [ 109 ]. However, only rare mutations in the TGFβ pathway have been found in 
breast cancers [ 109 ,  110 ]. Based on our in vitro data, we suggest that during in vivo 
carcinogenesis no additional errors beyond acquisition of immortality may be needed 
to confer resistance to TGFβ growth inhibition. During malignant progression in 
vivo, it could be benefi cial to cancer cells to retain the capacity for TGFβ- inducible 
ECM- or EMT-related functions while avoiding the growth inhibition. However, it 
might be advantageous in some circumstances to avoid the growth inhibition prior to 
full immortalization or to forgo the additional metabolic expenditures, accounting for 
situations where mutations are observed and all responses to TGFβ are lost.  

15.6.3     Immortalization and OIS 

 Another signifi cant alteration associated with the process of telomerase expression 
and immortalization is the acquisition of resistance to OIS. For malignant 
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progression to proceed, the normal ability of cells to respond to inappropriate onco-
genic expression by cessation of growth needs to be abrogated. We and colleagues 
have seen that ectopic overexpression of oncogenes such as Raf-1, Ras, and ErbB2 
in fi nite lifespan HMEC can produce rapid growth inhibition, whereas similarly 
exposed nonmalignant immortal lines maintain growth and acquire malignancy- 
associated properties such as anchorage-independent growth and reduced growth 
factor requirements [ 14 ,  16 ,  44 ,  45 ]. The transition to OIS resistance is a critical 
alteration and emphasizes the importance of immortalization and particularly the 
conversion step in tumorigenesis. The mechanism by which HMEC and other 
human epithelial cells gain OIS resistance is currently unclear but differs from what 
has been reported for most fi broblast or rodent cells in lacking a requirement for 
functional p53, p16, ATM, or CHK2 [ 14 ,  16 ]. A curious and potentially important 
observation, although thus far not further explored, suggests the possibility that the 
differences in OIS responses of fi nite versus immortal HMEC may be based on dif-
ferent levels of expression of the oncogenes. We noted that basal and 4-HT-induced 
expression levels of the Raf-1:ER transgene, as well as phosphorylated MEK, were 
consistently reduced in post-conversion immortal 184A1 compared to fi nite HMEC 
or pre-conversion 184A1 [ 14 ]. When post-conversion 184A1-Raf-1:ER was sorted 
to obtain cells showing the highest levels of Raf-1, immediate assay showed 
decreased survival upon induction with 4-HT. However, when these sorted cells 
were amplifi ed and reexamined, Raf-1 levels were again reduced. Conversely, when 
post-selection HMEC transduced with Raf-1:ER were exposed to low levels of 
4-HT so that expression levels were similar to those seen in 184A1, not only were 
the cells not growth inhibited, they showed increased growth capacity in the absence 
of EGF. Possibly, abnormally high levels of oncogene expression can trigger OIS, 
while lower levels can confer malignant properties, and immortal HMEC may have 
a mechanism to prevent ongoing high-level expression. 

 Altogether, these examples emphasize the critical role the immortalization step 
plays in HMEC carcinogenesis.   

15.7     Conclusions 

 The development of an extensive, integrated culture system for examining normal 
and aberrant HMEC behavior has allowed us to take a comprehensive overview of 
how the processes functioning in normal HMEC become subverted during transfor-
mation and the relationship of individual alterations incurred with resultant trans-
formed phenotype. Several generic conclusions can be drawn from these studies. 

 First, a major caveat needs to be considered when evaluating these data. Most of 
this work was performed with cells growing in two dimensions on plastic substrates, 
whereas normal and aberrant epithelial cell processes in vivo involve complex inter-
actions of polarized cells within three-dimensional organ systems. As others have 
elegantly shown [ 54 – 56 ], many important cellular behaviors will differ when cells 
are placed in culture environments that support cell polarity and provide ECM 
material and stromal interaction. In developing our HMEC culture system, we tried 
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to balance the goal of being amenable to widespread use with the goal of optimizing 
the system to refl ect in vivo biology. We consequently focused on standard tissue 
culture technology in order to generate suffi cient HMEC to support large-scale, 
reproducible investigation. HMEC cultures have subsequently been examined using 
3D culture systems such as Matrigel or micropatterned wells [ 49 ,  52 ,  57 ], but such 
studies have thus far been limited. Importantly, normal HMEC placed in 3D envi-
ronments have demonstrated appropriate self-organization, indicating that the 
needed lineage-specifi c properties have been retained. However, data obtained in 
2D culture may not accurately refl ect the in vivo biology. A situation where this 
issue may be most relevant involves the transition from a nonmalignant immortal 
cell (DCIS) to a malignant primary cancer cell. In vivo, this transition likely involves 
epithelial-stromal interactions, a hypoxic environment, and selection for errors that 
promote malignancy-associated properties, such as invasiveness and angiogenesis. 
Our in vitro selection is only for immortality and is unlikely to recapitulate the 
changes associated with this transition in vivo. A more accurate approximation of in 
vivo 3D biology can be expected to offer new and better insights into the processes 
underlying carcinogenesis and aging. 

 A common thread in our studies is the extent of diversity and heterogeneity 
among normal and abnormal cell types and how this manifests in signifi cantly dif-
ferent molecular processes. In terms of understanding human carcinoma progres-
sion, HMEC and epithelial cells in general have many signifi cant biological 
differences compared to HMF and fi broblasts in general. An outstanding example 
involves mechanisms of senescence. Among many distinctions, there was almost no 
overlap between genes modulated at HMEC senescence (stasis and telomere dys-
function) and genes modulated in senescent HMF; there were differences in mole-
cules modulated by HMEC and HMF during OIS; normal HMEC are growth 
inhibited by TGFβ exposure, while isogenic HMF respond with a slight growth 
stimulation [ 13 – 16 ]. These distinctions are important in light of the common use of 
fi broblasts to study mechanisms of senescence, often with an implied assumption 
that the results obtained are generic to “cells.” Our development of robust culture 
conditions for normal HMEC should encourage increased usage of human epithelial 
cells to understand what is distinct about their senescence mechanisms, which in 
turn play prominent roles in suppressing carcinogenesis. 

 Signifi cant differences are found comparing human and rodent epithelial cells in 
mechanism relevant to carcinogenesis. Most important, rodents lack stringent 
repression of telomerase in adult cells and thus the crucial telomere dysfunction 
senescence barrier. They also differ in the relative roles of the CKIs p19/14 ARF  and 
p16 in stasis and immortalization. While rodent models offer the ability to perform 
in vivo experimentation, the critical errors required by human epithelial cells for 
immortalization will not be amenable for discovery using rodent models. The 
immortalization step presents a potentially valuable therapeutic target, since almost 
all breast cancers, regardless of subtype, exhibit telomerase reactivation and are 
dependent upon immortalization for malignant progression. Further, unlike signal-
ing pathways where extensive redundancy contributes to development of therapeu-
tic resistance, the use of alternate (ALT) pathways for telomere maintenance is 
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extremely rare in human epithelial cells and in breast cancers [ 111 ]. Efforts to clini-
cally exploit the requirement for immortalization-promoting errors will be enhanced 
by the availability of human epithelial cell culture systems that support experimen-
tal examination of genomic, epigenomic, and gene expression alterations associated 
with immortalization. 

 Heterogeneity exists among normal HMEC in vivo and in vitro. Cells with lumi-
nal versus myoepithelial lineage markers may have differences, such as signaling 
pathway usage, that carry over to observed differences between luminal and basal 
tumor cell lines. Multiple types of progenitor populations are also present, with dis-
tinctions presumably based on epigenetic marks and other properties. Identifi cation 
and characterization of the different normal HMEC types may be relevant for identi-
fi cation of the initial target cell types of the different breast cancer subtypes and how 
the properties of the target cell infl uence cancer progression and treatment. The abil-
ity to grow and FACS enrich these diverse lineages in our cultured pre-stasis HMEC 
can facilitate studies that assess the effects of various oncogenic exposures on differ-
ing initial target populations. Additionally, FACS-enriched normal populations may 
serve as more accurate normal controls for type-specifi c breast cancer cells than an 
unsorted heterogeneous population. Proliferative normal HMEC in culture can in 
some instances provide more relevant controls for proliferative cancer cells than 
comparisons of normal and tumor tissue in vivo. Normal HMEC in vivo have low 
proliferation rates, and properties associated with a proliferative state may be errone-
ously assessed to be tumor-specifi c based on examination of in vivo tissues. 

 During carcinogenesis, heterogeneity is amplifi ed by driver and passenger altera-
tions acting on the initial target cells, resulting in the diversity of breast cancer sub-
types with corresponding diverse clinical parameters. Since a goal of personalized 
medicine is matching therapeutic modalities with the specifi c errors present in indi-
vidual tumors, the accuracy with which experimental models in vitro match in vivo 
molecular parameters will infl uence the usefulness of such models for evaluating 
potential therapeutics. Such considerations underscored our use of oncogenic agents 
thought to play a role in breast cancer etiology in our HMEC transformation models. 
For example, most breast cancers express wild-type p53 and retain functional RB 
[ 112 ]. Loss of these key molecular hubs will have much greater consequences on a 
cancer cell’s behavior than impairment of one sub-pathway, such as loss of p16. 
Immortalization of HMEC achieved by use of viral oncogenes SV40T or HPVE6 
and E7 not only inactivates p53 and RB function but also produces many other unde-
fi ned changes; cells transformed by such methods are unlikely to provide accurate 
models for exploring potential breast cancer type-specifi c therapeutics. Lines 
immortalized by ectopic overexpression of hTERT will lack the critical alterations 
associated with reactivation of endogenous telomerase, including, as discussed 
above, the process of conversion and related changes in telomere dynamics and OIS 
responses. Additionally, transformation systems employing hTERT and viral onco-
genes are not amenable for understanding the mechanisms of HMEC immortaliza-
tion during in vivo carcinogenesis or therefore examination of agents that might 
prevent this step in progression. By using pathologically relevant oncogenic agents, 
we have obtained transformed cells that share many of the properties seen during in 
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vivo breast carcinogenesis, such as retaining wild-type p53 and RB. By requiring 
cells to reactivate endogenous telomerase activity, we can examine the crucial 
immortalization step during cancer progression. Nonetheless, until recently, we have 
not been able to model most of the phenotypes observed in actual breast cancers. 

 Most published in vitro transformed HMEC lines have exhibited a basal, triple- 
negative, or claudin-low phenotype, while the majority of breast cancers belong to 
luminal subtypes. A large number of studies are being performed on a very limited 
set of immortalized lines that are not representative of most breast cancers and may 
not be refl ective of most breast cancers’ behavior. Consequently, our more recent 
efforts have been directed towards generating transformed lines more refl ective of the 
range of breast cancers in vivo. These studies are currently in progress but indicate 
that using HMEC from older women as target cells, and employing additional agents 
to bypass stasis, can lead to transformed cells lines with luminal lineage markers. 

 The other main conclusion from our integrated model system is the crucial role 
of telomere dysfunction and the immortalization step in human breast cancer pro-
gression. The changes associated with overcoming telomere dysfunction support 
multiple aspects of tumor progression. In addition to the advantages provided by 
unlimited proliferative potential, the immortalization step also promotes genomic 
instability, changes OIS into oncogenic promotion of malignancy, and abrogates 
TGFβ-induced growth inhibition while leaving cells responsive to TGFβ-induced 
tumor promotion and EMT. Our comparisons of isogenic fi nite and immortal HMEC 
indicate that the transition from fi nite to immortal is associated with the greatest 
extent of changes in epigenomic marks and gene expression. The requirement of 
immortalization for malignancy and the lack of easy redundant alternatives to 
telomerase reactivation suggest that immortalization may be a valuable target for 
clinical intervention. While there has been signifi cant effort to develop pharmaco-
logic agents that could interfere with telomerase action, other errors necessary to 
attain or maintain immortalization could also be valuable targets. Our limited under-
standing of the mechanisms underlying human epithelial cell immortalization, and 
the absence of accurate rodent models of this step, has held up exploration of this 
possibility. Our development of reproducible methods for non-clonal immortaliza-
tion using pathologically relevant agents may open up new way to explore potential 
novel therapeutics targeting this step. 

 The processes implicated in human epithelial cell senescence and carcinogenesis 
in vivo are complex, involving alterations both within a cell’s genome and physiol-
ogy, and in relationship to its immediate and whole-body environment. Many recent 
exciting publications that directly examine human breast tissues are providing large 
quantities of information about the pathways and derangements associated with 
breast carcinogenesis and illuminating the extent of inter- and intra-tumor heteroge-
neity during various stages of tumor development [ 5 – 9 ]. However, determining 
cause and effect relationships, identifying driver abnormalities among the hundreds 
of other changes, and testing potential therapeutics are constrained using only in 
vivo approaches. An in vitro HMEC model system, although also limited, offers an 
experimentally tractable approach to investigate the effects of individual perturba-
tions in HMEC at different stages in transformation along distinct transformation 
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pathways. It can be expected that the closer such model systems refl ect the pro-
cesses occurring in vivo, the more accurate they will be for assessing potential clini-
cal interventions. We have presented an overview of our integrated HMEC model 
system for such experimentation and highlighted some of the ways in which our 
comprehensive culture system has provided novel insight into these complex pro-
cesses. Importantly, our model system starts with normal fi nite lifespan pre-stasis 
HMEC, allowing examination of the critical early stage changes that occur as nor-
mal cells transition to immortality. Ongoing improvements in HMEC model sys-
tems, including better modeling of 3D and microenvironmental conditions and of 
the range of pathways to and phenotypes of transformed cells, can greatly assist 
efforts to delineate the different pathways a normal HMEC can take to become 
malignant and enable investigation into potential therapeutic approaches to prevent 
malignant progression.     
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    Abstract     Breast cancer is still among the most common life-threatening cancers 
that affects one out of eight women, and it further affects a small percent of the male 
population. While early detection has been helpful to reduce the mortality rate, we 
currently still do not have cures for advanced and metastatic breast cancer. In recent 
years, new strategies have been proposed to treat breast cancers with poor prognosis 
by utilizing genetically modifi ed bacteria, including  Salmonella typhimurium , that 
preferentially replicate within solid tumors (1,000:1 and up to 10,000:1 compared 
to noncancerous tissue) destroying cancer cells without causing septic shock that is 
typically associated with wild-type  S. typhimurium  infections. Furthermore, these 
bacteria have the potential to be utilized as drug delivery systems to more effec-
tively target different subpopulations of breast tumor cells. This chapter reviews 
progress in using genetically modifi ed  S. typhimurium  for destruction of breast can-
cer cells in culture and in solid breast cancer tissue. We discuss the potential and 
future prospects for applications in clinical trials as novel breast cancer therapy for 
advanced stages of the disease. We further discuss potential combination therapies 
for optimal destruction of breast cancer cells.  

16.1         Introduction 

 Metastatic breast cancer is still among the most diffi cult cancers to treat and tradi-
tional treatments such as surgery, radiation, chemotherapy, or hormone treatments 
have been employed with only limited success. In addition, resistance to anticancer 
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drugs is among the primary reasons for breast cancer mortality. There is a compel-
ling need for new approaches to treat breast cancer especially in women with 
advanced tumor progression or breast cancer metastasis. Several investigations have 
focused on the potential use of genetically modifi ed  Salmonella  to treat breast can-
cer in advanced and metastatic stages. This approach is based on fi ndings that genet-
ically modifi ed bacteria such as  Salmonella typhimurium  preferentially replicate 
within solid tumors (1,000:1 or greater, compared to noncancerous tissue) destroy-
ing cancer cells without causing septic shock that is typically associated with wild- 
type  S. typhimurium  infections. Furthermore, these bacteria may be utilized as drug 
delivery systems to effectively target different subpopulations of tumor tissue. 
Direct targeting of tumor tissue has several advantages over intravenous or oral drug 
administration, as it is more effective and it would also eliminate site effects that are 
oftentimes caused when non-tumor cells are destroyed by the anticancer drugs that 
are not directly reaching the tumor tissue. 

 In addition, advances in genetic engineering of bacteria allow specifi c tumor- 
targeting capabilities and increased effectiveness to deliver anticancer agents into 
solid tumors. Studies so far have shown that it will be particularly important to 
determine the most effective strains of bacteria, as different strains of genetically 
modifi ed bacteria may target different cellular components which can be utilized for 
optimal and effective tumor therapy. Several thousands of  S. typhimurium  strains 
are currently already available that differ from each other genetically and can be 
utilized for further modifi cations. This allows engineering of strains that are optimal 
in appropriate lipopolysaccharide surface for attachment and penetration into tumor 
cells, antibiotic sensitivity, metabolic poverty of entire pathways, as well as indi-
vidual nutrients. Such genetically modifi ed bacteria might also be able to deliver 
nano-encapsulated drugs directly into the tumor where drugs are released to destroy 
cancer cells.  

16.2     From Anecdotal Information to Our Current State 
of Knowledge and Progress Toward Human 
Clinical Trials 

 The ability of bacteria to cause tumor regression had been recognized over 100 years 
ago [ 1 ], and more studies followed when physicians noticed that tumor patients 
exposed to  Salmonella  contaminations showed regression of their tumors [ 2 ]. The 
casual observation was possible because requirements for appropriate hygiene had 
not yet advanced to our current standards and knowledge about the need for hygiene 
was still in infant stages. Patients with tumors were placed in beds that had previ-
ously been occupied by patients with  Salmonella  infections without considering 
contamination by the infectious agent. However, the casual observations resulted in 
the development of Coley’s toxin, a bacterial extract that stimulated a general 
immune response [ 2 – 4 ]. The idea of stimulating the patient’s immune response to 
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fi ght cancer has prevailed to our current time, and different lines of research have 
focused on fi ghting cancers by boosting our own immune responses [ 5 ,  6 ]. 

 Subsequent investigators started to explore the use of bacteria as anticancer ther-
apeutic agents [ 7 ,  8 ] taking advantage of the discoveries that tumors contain anoxic 
regions [ 9 ] which inspired research on using the obligate anaerobe  Clostridium  to 
evoke tumor regression in mice. In a subsequent small clinical trial, oncolysis was 
observed in three out of fi ve patients that had been injected with  Clostridium butyri-
cum  [ 10 ]. Further efforts to use bacteria as anticancer agents included  Salmonella  
[ 11 ],  Escherichia  [ 12 ],  Clostridium  [ 7 ,  8 ],  Bifi dobacterium  [ 13 ],  Caulobacter  [ 14 ], 
 Listeria  [ 15 ,  16 ],  Proteus  [ 17 ], and  Streptococcus  [ 18 ], yielding varying results. 

 For anaerobic bacteria, cancer tissue represents an ideal environment in which 
nutrient enrichment provides an optimal source for bacterial growth and cell divi-
sion. In addition, tumor tissue vasculature contains large intercapillary distances 
allowing bacteria to easily reach the tumor tissue while they are more restricted 
from noncancer tissue with “non-leaky” vasculature [ 19 ]. 

 Current research has focused on  Salmonella  for its anticancer effectiveness, as 
 Salmonella  was shown to cause effective tumor regression [ 11 ,  20 ] in multiple indi-
vidual research approaches. Targeted bioengineering of  Salmonella  has resulted in 
signifi cant progress in destroying tumor cells in culture [ 21 – 24 ] and in tumor tissue 
of animal models including melanoma, colon, lung, and breast cancers [ 20 ,  25 – 32 ]. 
It was also shown that  Salmonella  evokes immune sensitization and antitumor 
immune responses, inducing neutrophil infi ltration into tumors [ 33 ]. Numerous 
studies followed to generate optimal strains of  Salmonella,  and the attenuated 
 Salmonella  strain termed VNP 20009 with a modifi ed lipid A component was fi rst 
used in human clinical trials in patients with metastatic melanoma; VNP 20009 is 
nontoxic and had shown tumor colonization [ 34 ] in prior animal studies. In dogs, 
administration of the  Salmonella  strain VNP 20009 resulted in complete cures of 4 
out of 35 animals [ 35 ]. However, clinical trials in humans showed limited success, 
and it was recognized that further research is needed to optimally design bacterial 
strains to target tumor in humans. 

 Since then multiple laboratories have focused their efforts on designing new 
strains of genetically modifi ed  Salmonella  with the goal to satisfy the following 
criteria for optimal strain development aimed at (1) entrapment of bacteria in the 
vasculature of tumor [ 19 ], (2) infi ltration of tumors following infl ammation [ 36 ], (3) 
chemotaxis toward compounds produced by tumors [ 37 ,  38 ], (4) preferential growth 
in tumor-specifi c microenvironments [ 37 ,  39 ], and (5) protection from recognition 
by the immune system [ 40 ]. These approaches utilize specifi c knowledge of 
bacteria- tumor interactions and include, for example, chemotaxis of  Salmonella  
toward small molecular gradients such as serine, aspartase, and ribose or others that 
are enriched in tumor tissue. Tumor-specifi c auxotroph  Salmonella  have been cre-
ated that require leucine and arginine for bacterial survival; these nutrients are avail-
able for bacterial metabolism from dying tumor tissue [ 31 ,  39 ]. The leaky tumor 
vasculature [ 41 ,  42 ] and bacterial motility allow for diagnosis and treatment of can-
cers in distal and hard-to-image regions of the tumors which is especially important 
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for the treatment of metastatic tumors. Bacteria can move from the vasculature to 
distant tumor tissue by using fl agellum-driven motility [ 43 ]. 

 Other research has focused on generating strains for transfection with genes for 
therapeutic molecules including toxins [ 44 – 46 ], cytokines [ 5 ,  47 ], tumor antigens 
[ 48 ], apoptosis-inducing factors [ 49 – 53 ], and several others that are reviewed in 
more detail by [ 54 ]. 

 Most of the studies so far have been conducted in the mouse which allowed fast 
advances in the fi eld, and it further allowed advances using genetically modifi ed 
 Salmonella  for tumor imaging and therapy. New research has also focused on using 
bacteria for diagnosis and better determination of tumor for imaging tumor tissue 
and metastases. Labeled bacteria can be detected by light microscopy [ 12 ,  39 ,  55 ] 
including multiphoton tomography, magnetic resonance imaging (MRI) [ 56 ], and 
positron emission tomography (PET) [ 57 – 59 ]. The use of quantum dot- and 
nanoparticle-labeled bacteria will further add to improved diagnosis as well as ther-
apy. Quantum dots combined with nano-encapsulation of drugs is an attractive 
novel approach for tumor imaging and drug delivery. 

 Other approaches to use bacteria for tumor imaging and identifi cation employ 
magnetotactic bacteria that could be detected by MRI and include the use of 
 Magnetospirillum magneticum , a bacterium that produces magnetic particles.  M. 
magneticum  has been shown to accumulate in tumors [ 56 ]. Numerous variations of 
the abovementioned approaches are possible utilizing our current knowledge of 
bacterial gene transfer and bacterial gene manipulations to create nontoxic bacterial 
strains for simultaneous tumor imaging, diagnosis, and treatment. The use of quan-
tum dots in combination with new strain development is particularly attractive in 
this regard. By using our current technologies, it is easy to generate bioluminescent 
bacteria by transformation with plasmid containing the lucCDABE operon from 
 Photobacterium leiognathi  [ 12 ,  44 ,  60 – 62 ] or generating fl uorescent bacteria by 
transformation with plasmids containing the gene for fl uorescent protein [ 12 ,  39 , 
 55 ] which has been used for imaging and identifying tumors in mice using whole- 
mouse imaging [ 12 ,  39 ,  44 ,  55 ,  60 – 62 ]. 

 Such imaging approaches would also benefi t patients with multiple tumor foci in 
breast cancer as well as in other cancers such as pancreatic and ovarian cancers that 
are hard to detect through early diagnosis. The use of such genetically modifi ed 
 Salmonella  would also allow reaching pockets of cancer that are not treatable by 
conventional methods and include targeting of tumor stem cells [ 63 ] which com-
prise a small population of cells that can cause tumor growth reinitiation resulting 
in tumor reoccurrence. 

 The abovementioned advances along with new studies to target tumor stem cell 
niches with  Salmonella  to prevent the reoccurrence of cancer are all aimed at pro-
ducing strains of genetically modifi ed  Salmonella  for specifi c tumor targeting. An 
additional advantage of custom-designing  Salmonella  strains for specifi c tumor tar-
geting is the fact that multiple strains with different genetic makeup can be utilized 
to target different subpopulations of the heterogeneous cell populations within a 
specifi c tumor. It would allow personalized designs of strains that would fi nd use in 
newly pursued personalized medicine approaches.  
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16.3     New Strategies and New Hopes for More Effi cient 
Breast Cancer Therapy Including Nanotechnology 
Combination Approaches 

 Effective delivery of drugs into the tumor tissue is still among the most challenging 
aspects in tumor therapy. New developments in nanotechnology have advanced this 
goal signifi cantly and revealed three aspects that are important for effective drug 
delivery into target tissue which are (a) effi cient encapsulation of the drugs, (b) suc-
cessful delivery of the drugs to the targeted region in the body, and (c) successful 
release of the drug. However, while nano-encapsulation of drugs has resulted in prog-
ress toward effective targeting of tumor tissue, the methods for effective drug delivery 
are still in the exploratory stages. In several cases, phagocytosis and encapsulation 
into liposomes have been used successfully for drug transport and delivery into tumor 
tissue, and animal studies are underway in a number of laboratories to take this 
approach for successful tumor-targeting drug administration ([ 64 ]; reviewed by [ 65 ]). 

 Successful nano-encapsulation of breast cancer drugs includes new developments 
of nanoparticles that are loaded with doxorubicin or taxol (abraxane) (reviewed in 
[ 65 ,  66 ]). Engineering of bacteria to deliver such drugs has been proposed but not yet 
moved into practical applications. However, the potential of prodrug or drug delivery 
by bacteria is signifi cant, and the prospects of using bacteria as nanoparticle carriers 
that specifi cally target tumor tissue are highly promising [ 54 ]. 

 Bacterially derived 400 nm  Salmonella  minicells labeled with tumor-specifi c 
antibody receptors have successfully delivered doxorubicin [ 67 ] and siRNA thera-
pies [ 68 ] to implanted breast tumors in mouse models. 

 The therapeutic effectiveness of  Salmonella  producing inhibiting RNA, protein, 
vaccines, and prodrug enzymes at tumor sites has recently been reported. It was 
further shown that  Salmonella  successfully targeted a MTDH/AEG-1-based DNA 
vaccine to orthotopically implanted 4T1 breast cancer tumors, resulting in enhanced 
doxorubicin activity which inhibited tumor growth and metastatic spread [ 69 ]. 

 Taken together, these new advances of using nontoxic genetically modifi ed bac-
teria for breast cancer therapy offer new realistic hopes to successfully treat 
advanced and metastatic tumors.  

16.4     Conclusions and Future Perspectives 

 Genetically modifi ed bacteria offer new hope to effectively combat breast cancer, 
especially in advanced and metastatic stages for which optimal treatment strategies 
are not yet available. Several lines of research are aimed at determining the best 
suited genetically modifi ed bacteria, as many avenues are possible that have not yet 
been explored at this time. Determining the most effective strain of genetically 
modifi ed bacteria that will effectively invade tumor tissue and destroy cancer cells 
without causing side effects is within reach and is actively pursued in several 
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laboratories worldwide. In addition to endogenously produced cancer therapeutics, 
encapsulating drugs through nanotechnology is also pursued in several laboratories 
worldwide and will allow more effi cient tumor targeting than the currently available 
administration methods. The methods for drug delivery are in exploratory stages 
and have already been tested in animal models including phagocytosis, minicell, 
and liposome utilization. The use of nontoxic genetically modifi ed bacteria for 
delivery of encapsulated drugs directly into tumor tissue is an attractive avenue to 
pursue. These approaches would allow increase in drug effi ciency by only reaching 
and affecting the tumor-infested organ, thereby preventing site effects that are 
mainly caused when noncancer cells in healthy tissue are damaged by the antitumor 
drugs before reaching the tumor tissue.     
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